En mathématiques, les cours de géométrie en 4ème concernent deux grands domaines : les figures planes et le repérage dans l’espace. Le programme introduit les deux fameux théorèmes de Thalès et Pythagore, toutes les notions liées aux transformations, ainsi que l’utilisation des abscisses et ordonnées. Vous trouverez dans la catégorie « cours géométrie 4ème » des fiches de leçons, claires et structurées. Chaque fiche est à télécharger au format pdf et à distribuer à vos élèves. Un exercice corrigé pour chacune des notions abordées à glisser dans le cahier mémo peut s’avérer utile.
La géométrie en 4ème : théorèmes, transformations et calculs
Le programme de maths en 4ème est dense avec les nouveautés telles que les puissances de dix, les nombres relatifs et le calcul littéral. La géométrie n’est pas en reste avec l’entrée en jeu de l’incontournable théorème de Pythagore et celui de Thalès. Ils amènent les élèves à calculer des équations et à manipuler des égalités de fractions. En plus des cours de géométrie en 4ème, un entraînement intensif à base d’exercices corrigés est indispensable pour les aider à intégrer ces nouveaux points du programme. Ils vont devoir comprendre les transformations du plan, telles que les translations et rotations. Cours et exercices avec leur correction seront aussi consacrés à des calculs de tangentes, bissectrices et cosinus. Pour se situer dans l’espace, ils devront savoir se repérer sur des figures géométriques, identifier les abscisses et ordonnées, les longitudes et latitudes.
Cours géométrie 4ème : des leçons complètes pour le cahier
Pass-education vous accompagne dans la mise en place de l’enseignement de la géométrie en 4ème. Nous mettons à votre disposition des fiches de cours sur les différentes compétences du programme avec :
des rappels sur les notions de base ;
des supports récapitulatifs sur les triangles, cercle et disque ;
plusieurs fiches sur les théorèmes de Thalès et Pythagore afin d’explorer les différentes situations dans lesquelles ils sont mobilisés, etc.
C’est notamment avec l’usage de ces théorèmes que l’élève de 4ème apprend progressivement à construire des démonstrations en géométrie.
Cours de la catégorie Géométrie : 4ème, pdf à imprimer, fiches à modifier au format doc et rtf.
Cours sur “Revoir les symétries” pour la 4ème Notions sur “Les transformations du plan” LA SYMETRIE AXIALE Définition : On dit que le point A’ est le symétrique du point A par rapport à la droite (d) si la droite (d) est la médiatrice du segment [AA’]. Propriétés : Par une symétrie axiale d’axe (d) : Un segment est transformé en un segment de même longueur. Un cercle est transformé en un cercle de même rayon. Un angle est transformé…
Cours sur “Transformer une figure par une translation” pour la 4ème Notions sur “Les transformations du plan” Définition Une translation est une transformation du plan qui correspond à un glissement rectiligne. Une translation est définie par : Une direction Un sens Une longueur On peut schématiser ces trois informations par une flèche. Une telle flèche s’appelle un vecteur. Les trois éléments sens, direction, longueur sont représentés sur le dessin par une flèche, ici de M à M′, que l’on appelle…
Cours sur “Les rotations” pour la 4ème Notions sur “Les transformations du plan” Définition : Effectuer la rotation d’une figure F, c’est la faire pivoter autour d’un point O, appelé centre de la rotation, sans la déformer. Une rotation est définie par : Un centre. Un angle de rotation. Un sens de la rotation direct ou non. Le sens direct est le sens contraire des aiguilles d’une montre. (sens anti horaire) Exemples : Le point A’ est l’image du point…
Cours sur “L’égalité de Pythagore” pour la 4ème Notions sur “Le théorème de Pythagore” Définition : Dans un triangle rectangle, le plus grand côté est appelé hypoténuse. Il est opposé à l’angle droit (« opposé à » signifie « en face de »). Les deux autres côtés sont appelés les côtés adjacents à l’angle droit ; (« adjacent à » signifie « à côté de »). Exemple : Sur le dessin suivant : Le triangle CDE est rectangle en C….
Cours sur “Racine carrée d’un nombre positif” pour la 4ème Notions sur “Le théorème de Pythagore” Définition : Soit a un nombre positif. Il existe un seul nombre positif qui, élevé au carré donne a . Ce nombre est appelé racine carrée de a. La racine carrée de a se note : √a. Exemples : On sait que : 3 est positif et 3^2=9 donc √9=3 On sait que : 6,5 est positif et 〖6,5〗^2=42,25 donc √42,25=6,5 Il est utile…
Cours sur “Calculer une longueur dans un triangle rectangle” pour la 4ème Notions sur “Le théorème de Pythagore” Quand on connait les deux côtés d’un triangle rectangle, on peut calculer la longueur du troisième côté grâce à l’égalité de Pythagore. Le triangle ABC est rectangle en B donc d’après l’égalité de Pythagore on a : AC^2=AB^2+BC² Exemple 1 : On donne : AB = 5 cm. BC = 8 cm Calculer AC AC^2=AB^2+BC^2 AC^2=5^2+8^2 AC²=25+64 AC^2=89 AC= √89≈9,4 cm au…
Cours sur “Prouver qu’un triangle est rectangle ou non” pour la 4ème Notions sur “Le théorème de Pythagore” Réciproque du théorème de Pythagore. Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés alors, le triangle est rectangle. Méthode 1 : Prouver qu’un triangle est rectangle. est un triangle tel que : = 12 = 13 = 5 . Le triangle est il rectangle…
Cours sur “Reconnaître un rectangle” pour la 4ème Notions sur “Les parallélogrammes particuliers” Propriété 1 : Si un parallélogramme a ses diagonales de même longueur alors c’est un rectangle. Exemple 1 : Données : ABCD est un parallélogramme et AC=BD. On sait que (AB) est parallèle à (DC) et que (AD) est parallèle à (BC) et que AC=BD. Conclusion : ABCD est un rectangle. Exercice : Le quadrilatère QRST est un parallélogramme de centre U. Ses diagonales [RT] et [QS]…
Cours sur “Reconnaître un losange” pour la 4ème Notions sur “Les parallélogrammes particuliers” Propriété 1 : Si un parallélogramme a ses diagonales perpendiculaires alors c’est un losange. Exemple 1 Données : ABCD est un parallélogramme et (AC) est perpendiculaire à (BD) On sait que (AB) est parallèle à (DC) et que (AD) est parallèle à (BC) et que (AC)⊥(BD) Conclusion : ABCD est un losange Exercice : Le quadrilatère QRST est un parallélogramme de centre U. Ses diagonales [RT] et…
Cours sur “Reconnaître un carré” pour la 4ème Notions sur “Les parallélogrammes particuliers” Propriété 1 : Si un parallélogramme a un angle droit et deux côtés consécutifs de la même longueur, alors c’est un carré. Exemple 1 : Données : ABCD est un parallélogramme et (AB) est perpendiculaire à (AD) On sait de plus que AB = AD Conclusion : ABCD est un carré Exercice : Le quadrilatère MNOP est un parallélogramme. Ses côtés [MN] et [MP] ont la même…
Cours sur “Triangles égaux” pour la 4ème. Notions sur “Les triangles” Définition : Deux triangles sont superposables lorsqu’on peut les faire coïncider par glissement (translation) ou par glissement suivi d’un retournement. Des triangles égaux sont des triangles superposables, c’est-à-dire qui ont des côtés 2 à 2 de même longueur et des angles 2 à 2 de même mesure. Lorsque deux triangles sont égaux, deux angles superposables sont dits angles homologues ainsi que leurs sommets, deux côtés superposables sont dits côtés…
Cours sur “Cas d’égalité des triangles” pour la 4ème. Notions sur “Les triangles” Premier cas d’égalité. Si deux triangles ont un côté de même longueur et des angles adjacents à ce côté deux à deux de même mesure, alors ces deux triangles sont égaux. Exemple : On sait que : AB=FH (BAC) ̂=(HFG ) ̂ (ABC) ̂=(FHG) ̂ Or, si deux triangles ont un côté de même longueur et des angles adjacents à ce côté deux à deux de même…
Cours sur “Triangles semblables” pour la 4ème. Notions sur “Les triangles” Définition : Des triangles semblables sont des triangles qui ont leurs angles deux à deux de même mesure. Les triangles ABC et A’B’C’ sont semblables. Remarque : Si deux triangles sont égaux, alors ils sont semblables. En revanche, deux triangles semblables ne sont pas forcément égaux. Propriété Si deux triangles ont deux angles deux à deux de même mesure, alors ces triangles sont semblables. En effet : La somme…
Cours sur “Calculer des longueurs” pour la 4ème. Notions sur “Théorème de Thalès” Théorème de Thalès Si ABC et AMN sont deux triangles tels que : M∈[AB] N∈[AC°] (BC) et (MN) sont deux droites parallèles Alors les triangles ABC et AMN sont semblables. Donc les longueurs des côtés des triangles ABC et AMN sont proportionnelles. C’est-à-dire : Exemple : Sur la figure ci-dessous, qui n’est pas représentée à l’échelle, les droites (RS) et (LK) sont parallèles. On donne : LM=6…
Cours sur “Reconnaître des parallèles” pour la 4ème. Notions sur “Théorème de Thalès” La réciproque du théorème de Thalès sert à démontrer que des droites sont parallèles ou que des droites ne sont pas parallèles. Enoncé de la réciproque du théorème de Thalès (BM) et (CN) sont deux droites sécantes en A. Si les points A, M, B d’une-part et les points A, N, C d’autre-part sont alignés dans le même ordre et si : AM/AB=AN/AC Alors les droites (MN)…
Cours sur “Vocabulaire et définitions” pour la 4ème. Notions sur “Cosinus d’un angle” Tapez une équation ici. L’objectif de ce chapitre est d’être capable d’utiliser la relation entre le cosinus d’un angle aigu et les longueurs des deux côtés adjacents. On devra aussi utiliser la calculatrice pour déterminer une valeur (exacte ou approchée), en employant les touches cos et cos-1 ou Arc cos (suivant les calculatrices). Vocabulaire : Dans un triangle rectangle, le côté adjacent d’un angle aigu est le…
Cours sur “Utiliser le cosinus pour calculer une longueur” pour la 4ème. Notions sur “Cosinus d’un angle” Dans un triangle rectangle, dont on connaît la longueur du coté adjacent et la mesure de l’angle aigu, on veut retrouver la longueur de l’hypoténuse. Méthode : On écrit la formule du cosinus appliquée à ce triangle rectangle. On remplace les noms des côtés et angles connus par leur valeur. On effectue les calculs à l’aide de la touche cos de la machine…
Cours sur “Utiliser le cosinus pour calculer un angle” pour la 4ème. Notions sur “Cosinus d’un angle” Tapez une équation ici. Soit un triangle PQR tel que PQ = 5,7 cm et RQ = 7 cm. Calculer l’angle (PQR) ̂. [PQ] est le côté adjacent à l’angle (PQR) ̂. [PQ] est l’hypoténuse du triangle PQR. cos(PQR) ̂ = PQ/QR cos(PQR) ̂ = 5,7/7 Pour calculer l’angle que l’on cherche, on va utiliser la calculatrice. Il faut d’abord vérifier que l’on…
Cours sur “Se repérer dans un pavé droit” pour la 4ème. Notions sur “L’espace” Tapez une équation ici. Repérage dans un parallélépipède rectangle ou pavé droit Un parallélépipède peut définir un repère de l’espace. Il faut choisir une origine, ici le point A et trois axes gradués définis à partir de 3 côtés du parallélépipède. On choisit ici le repère (A,AB,AD,AF). On dit aussi le repère (A,B,D,F). Un point de l’espace est repéré par ses coordonnées : Son abscisse qu’on…
Cours sur “Représenter une pyramide ou un cône” pour la 4ème. Notions sur “L’espace” Définition d’une pyramide. Une pyramide est un solide dont : • Une face est un polygone appelé base. • Toutes les autres faces sont des triangles qui ont un sommet commun appelé le sommet de la pyramide. Ces faces sont appelées faces latérales. • La distance entre le sommet de la pyramide et sa base est appelée hauteur de la pyramide. Cas particulier : Une pyramide…
Cours sur “Calcul du volume d’une pyramide ou d’un cône” pour la 4ème. Notions sur “L’espace” Tapez une équation ici. Volume d’une pyramide ou d’un cône Volume=(aire de la base ×hauteur)/3 Dans le cas d’un cône de rayon r et de hauteur h , l’aire du disque est égale à πr^2. On a donc : Volume=(πr^2 ×h)/3 Exemples : Le volume d’une pyramide dont la base est un carré de côté 4 cm, et de hauteur 3 cm a pour…
Droite des milieux – 4ème – Cours – Géométrie Droite des milieux Dans un triangle, la droite qui passe par les milieux de deux côtés est parallèle au troisième côté. La longueur du segment qui joint ces deux milieux est égale à la moitié de la longueur du troisième côté. Milieu et parallèle Dans un triangle, la droite qui passe par le milieu d’un côté et qui est parallèle à un second côté, coupe le troisième côté…
Cône de Révolution – Cours – 4ème – Géométrie Définition Un cône de révolution de sommet H est un solide engendré par la rotation d’un triangle HOR rectangle en O autour de la droite (OH). Vocabulaire : Le disque de centre O et de rayon [OR] est la base de ce cône. Le segment [OH] est la hauteur de ce cône, il est perpendiculaire au plan contenant la base. Le segment [RH] est le générateur du cône de révolution. C’est…
Longueur d’un segment dans l’espace – Cours – 4ème – Géométrie Révisions : Les aires Le carré : c x c = c² C étant le coté du carré Le rectangle : l x L L est la longueur et l la largeur du rectangle Le parallélogramme : b x h b est la base et h la hauteur du parallélogramme Le triangle : h x b h est la hauteur et b la base du…
Distance d’un point à une droite – Cours – 4ème – Triangle – Géométrie Introduction à la distance d’un point à une droite A, B, C, D et E sont cinq points distincts alignés dans cet ordre sur une droite (d). M est un point n’appartenant pas à la droite (d), tel que (MC) est perpendiculaire à (d). Parmi les distances MA, MB, MC, MD et ME, quelle est la plus courte ? Le triangle MAC est un triangle rectangle…
Cercle – Tangente – 4ème – Cours – Géométrie Tangente à cercle en l’un de ses points Définition : A est un point du cercle (C ) de centre O. La tangente au cercle (C ) en A est la droite dont le seul point de contact avec (C ) est A. Propriété (pour construire la tangente à un cercle en l’un de ses points) : A est un point du cercle (C ) de centre O. Si (d)…
Bissectrices – 4ème – Cours – Géométrie Bissectrice d’un angle La bissectrice d’un angle est la droite qui coupe cet angle en deux angles égaux. L’angle xAy = L’angle yAz donc (Ay) est la bissectrice de l’angle xAz Remarque : la bissectrice d’un angle est un axe de symétrie pour cet angle. B et B’ sont symétriques par rapport à la bissectrice (Ay) Propriété : Si un point M appartient à la bissectrice d’un angle, alors M est à égale…
Triangle rectangle – Cercle circonscrit – 4ème – Cours – Géométrie Cercle circonscrit à un triangle rectangle Propriété 1 Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de l’hypoténuse. Propriété 1 bis Si un triangle est rectangle alors son hypoténuse est un diamètre de son cercle circonscrit. Propriété 2 Si un triangle est rectangle alors l’hypoténuse a pour longueur le double de celle de la médiane issue du sommet de l’angle droit….
Réciproque de pythagore – 4ème – Cours – Triangles rectangles – Géométrie Définition de la réciproque du théorème de Pythagore Si dans un triangle on a : BC2 = AB2 + AC2, alors le triangle est rectangle en A (BC étant l’hypoténuse) Exemple : Montrer qu’un triangle dont les côtés mesurent 3, 4 et 5 est un triangle rectangle. On choisit : AC = 3, AB = 4 et BC = 5 BC est le côté le plus long….
Propriété de pythagore – 4ème – Cours – Triangles rectangles – Géométrie Définition Dans un triangle rectangle, on appelle hypoténuse le plus grand côté. C’est aussi le côté opposé à l’angle droit. Théorème de Pythagore Dans un triangle rectangle, le carré de la longueur de l’hypoténuse est égal à la somme des carrés des longueurs des côtés de l’angle droit. Dans le triangle ABC rectangle en A : BC2 = AB2 + AC2 Exemple Soit RFA un triangle…