Cours pour la 3ème sur le calcul littéral : Synthèse. Notations et multiplications On peut supprimer des symboles de multiplication : 3×x=x×3=3x Cas particulier : 1×x=1x=x Notation : x×x=x^2 (≠2x) Multiplications: 3x×5=3×x×5=15x 3x×2x=3×x×2×x=6x^2 2a×5b=2×a×5×b=10ab Substitution SUBSTITUER : c’est remplacer une lettre par une valeur donnée. A=2x^2-7x+2 pour x=3 A=2×3^2-7×3+2 A=2×9-21+2 A=18-21+2 A=-1 → on fait réapparaître les « × » et on applique les priorités. Additions et soustractions REDUIRE : c’est ajouter ou soustraire les termes qui ont la même…
Cours pour la 3ème sur les fonctions sur factoriser avec une identité remarquable. Rappel : Factoriser une expression littérale, c’est transformer une somme (ou différence) en un produit. C’est le contraire de développer : k×a+k×b=k×(a+b) et k×a-k×b=k×(a-b) → Il faut repérer le facteur commun. → On regroupe dans une parenthèse les autres facteurs, en addition ou soustraction. Exemples : 5x+5y=5×(x+y) 3x+12=3×x+3×4=3×(x+4) x^2-7x=x×x-7×x=x×(x-7) 4x(x+1)+3(x+1)=(x+1)×(4x+3) Factoriser à l’aide d’une identité remarquable : Soient a et b deux nombres quelconques, on…
Cours pour la 3ème sur développer à l’aide d’une identité remarquable. On appelle identité remarquable une égalité mathématique qu’il est intéressant de reconnaître pour accélérer ou simplifier un calcul. Soient a et b deux nombres quelconques, on a : (a+b)(a-b)=a^2-b^2 Preuve : on peut appliquer la double distributivité : (a+b)(a-b)=a×a+a×(-b)+b×a+b×(-b)=a^2-ab+ba-b^2=a^2-b^2 Remarque : l’ordre des parenthèses n’a pas d’importance : (a+b)(a-b)=(a-b)(a+b) Méthode : pour développer à l’aide de cette identité remarquable : ① on repère l’identité remarquable ; ② on identifie…
Cours pour la 3ème sur développer et réduire une expression littérale. Notations et multiplications : Avec les lettres, on peut supprimer des symboles de multiplication : 3×x=x×3=3x Cas particulier : 1×x=1x=x Notation : x×x=x^2 à ne pas confondre avec 2x : si x=3,x^2=3^2=3×3=9 ≠ 2x=2×3=6 Multiplier plusieurs facteurs peut se faire dans n’importe quel ordre : 3x×5=3×x×5=3×5×x=15×x=15x 3x×2x=3×x×2×x=3×2×x×x=6〖×x〗^2=6x^2 2a×5b=2×a×5×b=2×5×a×b=10×a×b=10ab Additions et soustractions : On peut ajouter ou soustraire les termes qui ont la même partie littérale : les…
Cours pour la 4ème sur la synthèse calcul littéral. Enlever les parenthèses précédées d’un signe + ou – : Lorsqu’une parenthèse est précédée d’un signe + on peut enlever cette parenthèse en conservant les signes à l’intérieur de celle-ci. Exemples : 5+(2x-1)=5+2x-1 Réduire une expression littérale : Réduire une expression littérale, c’est l’écrire avec le moins de termes possible. Méthode : Pour réduire une expression littérale, il faut supprimer les parenthèses si besoin et regrouper tous les termes…
Cours pour la 4ème sur réduire une expression littérale. Rappels Définition (rappel) : Une expression est une suite d’un ou plusieurs calculs. Une expression littérale est une expression contenant au moins une lettre. Exemples : A=3×x-2 ; B=y^2+1 ou encore C=2×x-3×y sont des expressions littérales. Propriété : On peut supprimer le signe × Lorsqu’il est suivi d’une lettre ou d’une parenthèse. Exemples : Les expressions littérales A et C ci-dessus peuvent s’écrire 3x-2 et 2x-3y. Réduire une expression littérale…
Cours pour la 4ème sur réduire une expression littérale (2). Rappel : On sait déjà développer une expression littérale grâce à la simple distributivité : k×(a+b) =k×a+k×b et k×(a-b)=k×a-k×b Double distributivité : On peut illustrer la double distributivité comme l’aire d’un rectangle : → Aire totale du rectangle : (a+b)×(c+d) → Aire décomposée comme la somme des 4 petits rectangles : a×c+a×d+b×c+b×d Soient a, b, c et d des nombres quelconques, on a : (a+b)×(c+d)=a×c+a×d+b×c+b×d Exemples : (4t+3)×(t+5)=4t×t+4t×5+3×t+3×5=4t^2+20t+3t+15=4t^2+23t+15 (2u-1)(4u+3)=2u×4u+2u×3+(-1)×4u+(-1)×3=8u^2+6u-4u-3=8u^2+2u-3…
Cours pour la 4ème sur développer une expression littérale. Rappels : Définition (rappel) : Une expression est une suite d’un ou plusieurs calculs. Une expression littérale est une expression contenant au moins une lettre. Exemples : ; ou encore sont des expressions littérales. Propriété : On peut supprimer le signe lorsqu’il est suivi d’une lettre ou d’une parenthèse. Exemples : Les expressions littérales et ci-dessus peuvent s’écrire et . Développement d’une expression littérale : Développer une expression littérale, c’est «…
Cours pour la 4ème sur factoriser une expression littérale. Rappels Définition (rappel) : Une expression est une suite d’un ou plusieurs calculs. Une expression littérale est une expression contenant au moins une lettre. Exemples : A=3×x-2 ; B=y^2+1 ou encore C=2×x-3×y sont des expressions littérales. Propriété : On peut supprimer le signe × Lorsqu’il est suivi d’une lettre ou d’une parenthèse. Exemples : Les expressions littérales A et C ci-dessus peuvent respectivement s’écrire 3x-2 et 2x-3y. Factorisation d’une…
Cours pour la 5ème sur la synthèse sur le calcul littéral. Simplifier / réduire une expression : Dans une expression littérale, on peut supprimer le symbole × lorsqu’il est placé : Devant une lettre ou une parenthèse Entre 2 lettres ou 2 parenthèses Cas des puissances : Carré d’un nombre : le produit par lui-même Cube d’un nombre : le produit 3 fois par lui-même Je réduis en regroupant les termes de même nature (les cubes ensemble, puis les carrés,…
Cours en nombres et calculs pour la 5ème sur simplifier une expression littérale. La plupart du temps, une même expression littérale peut s’écrire sous différentes formes. Il existe des règles pour uniformiser ces écritures ! Simplifier une expression littérale : Simplifier une multiplication Règle : Dans une expression littérale, on peut supprimer le symbole × lorsqu’il est placé : Devant une lettre ou devant une parenthèse. Entre deux lettres ou entre deux parenthèses. Exemples : 3 × a = 3a…
Cours en nombres et calculs pour la 5ème sur l’expression littérale. Produire une expression littérale : Définition : Une expression littérale est une expression mathématique qui contient une ou plusieurs lettres. Celles-ci désignent des nombres. Exemples : 3 × x + 1 et a × a – 3 sont des expressions littérales. Méthode : Une expression littérale peut servir à modéliser une situation ou à exprimer le lien entre 2 grandeurs. Dans une expression littérale, si une lettre est présente…
Cours en nombres et calculs pour la 5ème sur développer et factoriser une expression littérale. Développer une expression littérale : Définition : Développer une expression littérale, c’est transformer un produit en une somme ou une différence. Pour développer une expression littérale, je peux utiliser la distributivité ! Propriété : Soit a, b et k, 3 nombres positifs. Je peux développer une expression en distribuant le facteur à chacun des termes entre parenthèses : k × (a + b) = k…
Cours sur “Tester une égalité” pour la 5ème. Egalité : Définition : Une égalité est constituée de 2 membres séparés par le symbole =. Ces 2 membres peuvent être des nombres ou des expressions littérales. Exemples ① : 3x + 2 = 4 est une égalité entre les membres 3x + 2 et 4. Exemples ② : Charles vend 3 croissants dont le prix en € est noté x, il vend également une baguette à 1,20 €. Le montant total…
Cours sur “Développement Réduction” pour la 4ème Notions sur “Calcul littéral” Distributivité de la multiplication par rapport à l’addition Propriété La multiplication est distributive par rapport à l’addition et à la soustraction. Cela signifie que, quels que soient les nombres a, b et k on a : Développer une expression littérale Développer une expression littérale c’est transformer un produit en somme ou en différence Exemple 1 : Développer 3(x+5) Pour développer cette expression on effectue le produit en utilisant la…
Cours sur “Produire, utiliser une expression littérale” pour la 5ème Notions sur “Calcul littéral” Pour résoudre des problèmes de mathématiques, on peut être amené à utiliser le calcul littéral. Une expression littérale est un calcul dans lequel un ou plusieurs nombres sont remplacés par des lettres. Ces lettres désignent des nombres. Exemples : 7 ×a+2 ; 8×x+9×y sont des expressions littérales. L’aire d’un rectangle de longueur L et de largeur l est égale à L×l. Retranscrire une situation réelle sous…
Cours sur “Factorisation” pour la 4ème Notions sur “Calcul littéral” Définition Factoriser une expression littérale, c’est transformer une somme ou une différence en produit. Pour cela on utilise les formules de distributivité dans le sens contraire. On dit que k est un facteur commun aux deux termes de la somme ka et kb Factoriser par 5 ou mettre 5 en facteur signifie que l’on obtient une expression de la forme : 5 ×(….. ) Exemples : Factoriser A=5x+30 On repère…
Cours sur “Simplifier une expression littérale” pour la 5ème Notions sur “Calcul littéral” Carré et cube d’un nombre : On appelle carré d’un nombre le produit de ce nombre par lui-même et on note : 〖x×x=x〗^2 On appelle cube d’un nombre le produit de ce nombre trois fois par lui-même et on note : 〖x×x×x=x〗^3 Simplification d’une expression : Il y a deux règles essentielles. Règle n°1 : Dans une expression littérale, on peut supprimer le signe × lorsqu’il est…
Cours sur “Expressions égales” pour la 4ème Notions sur “Calcul littéral” Définition Deux expressions littérales sont égales, si, pour n’importe quelles valeurs attribuées aux lettres, les deux expressions donnent le même résultat. Pour prouver que deux expressions sont égales : Pour prouver l’égalité de deux expressions, on peut transformer l’écriture de l’une afin d’obtenir celle de l’autre. Exemple : Prouver que : A=7x^2+5x et B=7x(x+1)-2x sont égales. On peut partir de l’expression de B et développer B. B=7x(x+1)-2x =7x×x+7x×1-2x=7x^2+7x-2x=7x^2+5x=A Les…
Cours sur “Tester une égalité” pour la 5ème Notions sur “Calcul littéral” Une égalité est constituée de deux membres séparés par un signe = Une égalité est vraie quand les deux membres ont la même valeur. Pour tester si une égalité est vraie pour une valeur donnée de x : On calcule le membre de gauche en remplaçant chaque lettre par le nombre donné. On calcule le membre de droite en remplaçant chaque lettre par le nombre donné. On observe…
Cours sur “Programme de calcul” pour la 5ème Notions sur “Calcul littéral” On appelle « programme de calcul » tout procédé mathématique qui permet de passer d’un nombre à un autre, suivant une suite d’opérations déterminée. Exemple : Choisir un nombre Le multiplier par 2 Ajouter 5 au résultat Si on choisit le nombre 4 On le multiplie par 2 : on obtient 8 On ajoute 5 : on obtient donc 13 en sortie de programme. Un programme de calcul…
Calcul littéral – 4ème – Cours I) Rappels 1) Définition Une expression littérale est une expression dans laquelle des nombres (souvent inconnus) ont été remplacés par des lettres. Si une expression contient plusieurs fois la même lettre, alors elle désigne le même nombre. 2) Conventions d’écriture Afin d’alléger les écritures, on convient des règles suivantes : · Le signe de la multiplication ( x ) disparaît : – entre deux lettres : a x b s’écrit…
Calcul littéral – Equations – Initiation – 5ème – Cours Simplification d’un calcul littéral : conventions d’écriture Des nombres et des lettres: Définition : une expression littérale est une expression contenant une ou plusieurs lettres, ces lettres désignent des nombres. Ex : Le périmètre P d’un rectangle de longueur L et de largeur l est donné par la formule : P = 2 x (L + l) Simplification de l’écriture d’une expression littérale: Convention : On peut supprimer le…
Calcul littéral – Identités remarquables – 3ème – Cours Carré d’une somme Soit a et b, deux nombres relatifs, alors : Carré d’une différence Soit a et b, deux nombres relatifs, alors : Produit d’une différence par une somme Soit a et b, deux nombres relatifs, alors : Remarque : ces 3 propriétés peuvent être utilisées pour factoriser et développer. Voir les fiches Télécharger les documents Calcul littéral – Identités remarquables – 3ème – Cours rtf Calcul littéral -…
Calcul littéral – 3ème La reconnaissance de la forme d’une expression algébrique faisant intervenir une identité remarquable peut représenter une difficulté qui doit être prise en compte. Les travaux s’articuleront sur deux axes : – utilisation d’expressions littérales pour des calculs numériques ; – utilisation du calcul littéral dans la mise en équation et la résolution de problèmes. Les activités viseront à assurer la maîtrise du développement d’expressions simples ; en revanche, le travail sur la factorisation qui se poursuivra…
Calcul littéral et distributivité – 5ème Objectifs 1. Savoir utiliser la distributivité dans les deux sens 2. Savoir utiliser la distributivité dans des calculs littéraux 3. Savoir rédiger un problème présentant plusieurs opérations en indiquant la réponse en une seule expression Ressources pédagogiques en libre téléchargement à imprimer et/ou modifier. Public ciblé : élèves de 5ème Collège – Domaines : Calculs Mathématiques Sujet : Calcul littéral et distributivité – 5ème – Cours – Exercices – Collège – Mathématiques Voir les…