En cette première année du cycle 4, en mathématiques, l’élève passe d’une géométrie basée sur l’observation et l’utilisation des instruments à une géométrie qui s’appuie sur le raisonnement et l’argumentation. Les cours de géométrie de 5èmeproposent des fiches sur les différents points du programme : définitions, programmes de constructions, propriétés, formules, etc.
La géométrie en 5ème : introduction de la démonstration
Les différents objets géométriques découverts par les élèves au cycle 3 continuent d’être rencontrés en cinquième. De nouvelles propriétés et définitions sont introduites sur les droites parallèles, le parallélogramme en général et ceux particuliers comme le rectangle ou le carré dont les diagonales se croisent perpendiculairement, les angles alternes internes par exemple, les triangles et leurs droites remarquables. Les élèves apprennent à tracer les médiatrices et les hauteurs d’un triangle. Ces propriétés ne sont plus seulement constatées, elles sont démontrées. La symétrie centrale est la première nouvelle transformation étudiée. Les cours et traces écrites de géométrie en 5ème viennent appuyer et aider à l’acquisition de ces nouvelles compétences.
Cours géométrie 5ème : des fiches leçons claires et structurées
Le programme de maths en géométrie classe de 5ème est dense. Les élèves ne se contentent plus de définitions. Ils doivent démontrer puis mémoriser les propriétés et règles de construction des figures et éléments géométriques, les formules de calcul d’aires et longueur de périmètres. Vous trouverez sur le site Pass-education de nombreux cours de géométrie en 5ème, sur les différents points abordés en classe. Chaque notion fait l’objet d’une fiche dédiée, disponible en téléchargement au format pdf. Et parce qu’une vidéo est parfois plus parlante que des mots, n’hésitez pas à leur projeter des modélisations 3D des éléments étudiés ou encore les démarches de démonstration. Certaines sont à retrouver sur sur notre site ou ceux du ministère. Cela contribuera à renforcer la création d’images mentales chez les élèves. Tout au long du cycle 4, les exercices rituels de construction de de verbalisation des procédures permettent aux élèves d’automatiser les procédures de repérage ainsi que les constructions et transformations attendues au programme de géométrie 5ème.
Cours à imprimer et modifier de la catégorie Géométrie : 5ème, fiches au format pdf, doc et rtf.
Cours sur “Calculer le périmètre d’une figure, dans différentes unités” pour la 5ème Notions sur “Aires et périmètres” Définition : Le périmètre d’une figure est la longueur de son contour. Pour trouver le périmètre du polygone ABCDE , il suffit d’ajouter les longueurs des côtés exprimés dans la même unité. 5+5,4+10,4+6,3+3,6=30,7 Le périmètre du polygone ABCDE est égal à 30,7 cm. Attention : Quand on calcule le périmètre d’un polygone, les longueurs des côtés doivent être exprimées dans la même…
Cours sur “Formules d’aires” pour la 5ème Notions sur “Aires et périmètres” Rectangle Aire = Longueur × largeur Carré Aire = Côté × Côté Triangle Aire = (base×hauteur) / 2 Triangle rectangle Aire = (base×hauteur) / 2 Disque Aire = π×r² Voir les fichesTélécharger les documents Cours-5ème-Formules d’aires pdf Cours-5ème-Formules d’aires rtf…
Cours sur “Aires de figures plus complexes” pour la 5ème Notions sur “Aires et périmètres” Pour calculer l’aire d’une figure complexe, il y a plusieurs techniques : On peut calculer l’aire d’une figure en la décomposant en figures plus simples dont on connait l’aire. Calculer, en cm², l’aire de la figure ci-dessous au dixième près : On décompose cette figure en figures plus simples dont on connait l’aire : Aire de la figure jaune = (3×3)/2=4,5 cm² Aire de la…
Cours sur “Construire et représenter un prisme droit” pour la 5ème Notions sur “Géométrie dans l’espace” Un prisme droit est un solide dont : Deux faces sont des polygones superposables et parallèles : on les appelle bases, et sont généralement dessinées « en haut » et « en bas ». (on a souvent l’impression que le solide est posé sur sa base inférieure) Les autres faces sont des rectangles : on les appelle faces latérales. On considère le prisme à…
Cours sur “Construire et représenter un cylindre” pour la 5ème Notions sur “Géométrie dans l’espace” Un cylindre de révolution est le solide obtenu en faisant tourner un rectangle autour d’un de ses côtés. Un cylindre de révolution possède : Deux faces parallèles qui sont des disques de même rayon (superposables). Ce sont les bases. D’une surface courbe appelée face latérale. Cette surface, lorsqu’elle est dépliée devient un rectangle. La hauteur d’un cylindre de révolution est la longueur du segment joignant…
Cours sur “Patrons” pour la 5ème Notions sur “Géométrie dans l’espace” Définition Un patron d’un solide est un dessin qui permet, après découpage et pliage, de fabriquer ce solide. Chaque face est dessinée en vraie grandeur. Patron d’un prisme droit Pour obtenir le patron d’un prisme droit il faut représenter toutes ses faces dans le même plan. Un patron d’un prisme droit est constitué de deux bases et des rectangles qui sont les faces latérales. Exemple : Construire le patron…
Cours sur “Volumes” pour la 5ème Notions sur “Géométrie dans l’espace” Volume du prisme droit = Aire de la base × hauteur du prisme Volume du cylindre Volume du cylindre = aire de la base × hauteur du cylindre Exemple : On veut calculer le volume d’un cylindre de hauteur h= 8 cm et de rayon r = 4 cm. On commence par calculer l’aire de la base : Aire de la base = π ×r ×r=3,14 ×4 ×4=50,24 cm²…
Cours sur “Construction d’un triangle quand on connait les trois côtés” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Construire le triangle ABC tel que : AB = 6 cm AC = 4 cm BC = 5 cm. Ce triangle existe car 6<4+5. On construit un des 3 côtés, par exemple le segment [AB] de longueur 6 cm. Avec le compas, on trace un arc de cercle de centre A et de rayon 4 cm. Avec le…
Cours sur “Construction d’un triangle quand on connait deux côtés et un angle” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Construire le triangle ABC tel que : ( BAC) ̂= 40° AB=6 cm AC=7 cm On construit le segment [AB] de longueur 6 cm. À l’aide du rapporteur, on construit un angle de 40° de sommet A et dont un côté est la demi-droite [AB). On place le point C sur la demi-droite à 7 cm…
Cours sur “Construction d’un triangle connaissant deux angles et un côté” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Construire le triangle ABC tel que : ( BAC) ̂= 40° (ABC) ̂ = 60° AB = 5 cm On trace le segment [AB] de longueur 5 cm. À l’aide du rapporteur, on construit un angle de 40° de sommet A et dont un côté est la demi-droite [AB). À l’aide du rapporteur, on construit un angle de…
Cours sur “Définition de la symétrie centrale” pour la 5ème Notions sur “La symétrie centrale” Deux figures symétriques par rapport à un point O sont deux figures qui se superposent par un demi-tour autour de ce point O. Le point autour duquel on fait un demi-tour s’appelle le centre de symétrie. Une symétrie centrale de centre O est donc un demi-tour autour du point O. La transformation qui transforme A en A’ est une symétrie centrale. Effectuer une symétrie centrale…
Cours sur “Méthodes de construction” pour la 5ème Notions sur “La symétrie centrale” Méthodes de construction • Dans un quadrillage On souhaite construire le symétrique du point A par rapport au point O. On dessine le déplacement qui permet de passer du point A au point O. Ici pour aller de A à O, on se déplace verticalement de 3 carreaux vers le bas et horizontalement de 5 carreaux vers la droite. Pour construire le point A’, on se place…
Cours sur “Propriétés de la symétrie centrale” pour la 5ème Notions sur “La symétrie centrale” Le symétrique d’une droite, par une symétrie centrale, est une droite qui lui est parallèle. Le symétrique du point par rapport à est le point ’. Le symétrique du point par rapport au point est le point . Le symétrique de la droite par rapport à est la droite ). Les droites et sont parallèles. Le symétrique d’un segment, par une symétrie centrale, est un…
Cours sur “Centre de symétrie d’une figure” pour la 5ème Notions sur “La symétrie centrale” Une figure admet O pour centre de centre de symétrie si son image par la symétrie centrale de centre O est la figure elle-même. Exemples : Dans les deux cas représentés ci-dessous, si l’on opère un demi-tour autour de O, les figures restent inchangées. Chacune de ces figures admet donc O pour centre de symétrie. Axes et centre de symétrie des figures usuelles : Nom…
Cours sur “Reconnaître les angles alternes-internes” pour la 5ème Notions sur “Les angles” Tapez une équation ici. Deux droites (d) et (d’) coupées par une droite sécante (D) définissent des angles alternes internes. Les angles bleus sont alternes-internes : Alternes : De part et d’autre de la droite (D) Internes : Entre les droites (d) et (d’). Cette même figure définit une autre paire d’angles alternes-internes. Voir les fichesTélécharger les documents Cours Reconnaitre des angles alternes-internes – 5ème pdf…
Cours sur “Reconnaître les angles correspondants” pour la 5ème Notions sur “Les angles” Tapez une équation ici. Deux droites (d) et (d’) coupées par une droite sécante (D) définissent des angles correspondants. Les angles correspondants sont : Situés du même côté de la droite (D). Ils sont positionnés de la même manière par rapport aux droites (d) et (d’). Les angles bleus sont correspondants. Cette même figure définit d’autres paires d’angles correspondants. Les angles rouges sont correspondants. Pour deux droites(d)…
Cours sur “Calculer un angle” pour la 5ème Notions sur “Les angles” Tapez une équation ici. Si deux droites(d) et (d’) sont parallèles, et coupées par une troisième droite sécante (D), alors les angles alternes internes qu’elle forme sont de même mesure. Les droites (d) et (d’) sont parallèles donc les angles alternes-internes ont la même mesure. Si deux droites(d) et (d’) sont parallèles, et coupées par une troisième droite sécante (D), alors les angles correspondants qu’elle forme sont de…
Cours sur “Reconnaitre des parallèles” pour la 5ème Notions sur “Les angles” Si deux droites (d) et (d’) sont coupées par une troisième droite (D) sécante en formant des angles alternes-internes de même mesure, alors elles sont parallèles. Les angles alternes-internes ont la même mesure : alors les droites (d) et (d’) sont parallèles. Si deux droites (d) et (d’) sont coupées par une troisième droite (D) sécante en formant des angles correspondants de même mesure, alors elles sont parallèles….
Cours sur “Définition du parallélogramme” pour la 5ème Notions sur “Les parallélogrammes” Tapez une équation ici. Quelques rappels sur le vocabulaire des quadrilatères : Un quadrilatère est une figure géométrique qui possède 4 côtés. Ce quadrilatère se nomme ABCD ou BCDA ou CBAD ou ….. , mais ne se nomme pas ACBD. Les points A,B,C et D sont appelés les sommets du quadrilatère. Les côtés qui sont en face l’un de l’autre, par exemple [AB] et [DC], s’appellent des côtés…
Cours sur “Propriétés du parallélogramme” pour la 5ème Notions sur “Les parallélogrammes” Tapez une équation ici. Avec les côtés Si un quadrilatère est un parallélogramme, alors ses côtés opposés ont la même longueur. Si l’on sait que ABCD est un parallélogramme, on peut en déduire que : AB=DC et AD=BC Avec les diagonales Si un quadrilatère est un parallélogramme, alors ses diagonales se coupent en leur milieu O. Si l’on sait que ABCD est un parallélogramme, on peut en déduire…
Cours sur “Aire du parallélogramme” pour la 5ème Notions sur “Les parallélogrammes” Hauteur dans un parallélogramme Définitions : On appelle hauteur d’un parallélogramme un segment qui indique l’écart entre 2 côtés parallèles de ce parallélogramme. L’un de ces 2 côtés parallèles s’appelle alors la base relative à cette hauteur. Puisqu’un parallélogramme possède 2 paires de côtés parallèles, alors il y a 2 manières de voir ce couple (base ; hauteur) : (base 1 ; hauteur 1) et (base 2 ;…
Cours sur “Reconnaitre un parallélogramme” pour la 5ème Notions sur “Les parallélogrammes” On sait qu’un quadrilatère est un parallélogramme si l’une de ces conditions est vérifiée : Les côtés opposés sont parallèles : Si on sait que (AB)// CD) et (AD)//(BC), alors on peut conclure que ABCD est un parallélogramme. Les diagonales se coupent en leur milieu : Si on sait que O est le milieu de [AC] et le milieu de [BD], alors on peut conclure que ABCD est…
Cours sur “Les parallélogrammes particuliers” pour la 5ème Notions sur “Les parallélogrammes” Tapez une équation ici. Le rectangle : Un rectangle est un quadrilatère qui a tous ses angles droits. Ses côtés opposés sont donc parallèles deux à deux : C’est un parallélogramme particulier. Le losange : Un losange est un quadrilatère qui a tous ses côtés de même longueur. Ses côtés opposés sont de même longueur deux à deux : C’est donc un parallélogramme particulier. Le carré : Un…
I. Propriétés sur les paires d’angles 1) Angles opposés par le sommet Les angles suivants ne sont pas opposés par le sommet. L’angle suivant est opposé par le sommet. Définitions : Deux angles opposés par le sommet sont deux angles qui ont le même sommet et sont symétriques par rapport à ce sommet. Représentation Il suffit de tracer deux droites sécantes. Elles définissent deux paires d’angles opposés par le sommet. Propriété Des angles opposés par le…
I) Prisme droit Définition Un prisme droit est un solide dont : – deux faces sont des polygones superposables et parallèles ; elles sont appelées bases. – les autres faces sont des rectangles ; elles sont appelées les faces latérales. Propriété Les arêtes latérales d’un prisme droit ont la même longueur. La hauteur d’un prisme est la longueur d’une arrête latérale. Patron Propriété Un patron d’un prisme droit est constitué de deux bases, des rectangles…
Un quadrilatère est un polygone qui a quatre côtés. Il possède donc quatre sommets et deux diagonales. Le rectangle, le losange, le carré : utiliser la définition et les propriétés Le losange : Définition : Un losange est un quadrilatère dont les côtés sont tous de la même longueur.Propriétés : Si ABCD est un losange alors : – C’est un parallélogramme. Le losange a donc les propriétés d’un parallélogramme. – Ses diagonales se coupent perpendiculairement. Théorèmes : – Un parallélogramme…
Construction de triangles Si on connaît la longueur des 3 côtés: Voici, la méthode à travers un exemple. Construire un triangle ABC tel que AB = 4 cm, BC = 2,5 cm et AC = 3,5 cm. 1) On trace un segment [AB] de 4 cm. 2) On trace deux arcs de cercle : – un de centre A et de rayon 3,5 cm – un de centre B et de rayon 2,5 cm. Si on connaît la longueur…
Reconnaître des figures symétriques par rapport à un point Définition : Deux figures sont symétriques par rapport à un point lorsque les deux figures se superposent en effectuant un demi-tour. C’est la symétrie centrale. Propriété: La symétrie centrale conserve les longueurs, l’alignement, les angles et les aires. Symétrique d’un point, d’un segment, d’une droite, d’une demi-droite, d’un angle, d’un cercle : Symétrique d’un point : Définition : On dit que le point B est le symétrique du point…
Symétrie centrale – 5ème 1. Décalquez toute la figure (le point O, le polygone ABCDE et la droite (OB)). 2. Planter la pointe d’un compas sur le point O, et faire pivoter le calque d’un demi-tour autour du point O, en s’aidant de la droite (OB) pour se guider. 3. Dessiner sur le quadrillage la figure ainsi obtenue, et tracer en rouge les demi-cercles de centre O et partant des points A, B, C, D te E permettant de visualiser…
Triangles – 5ème Prenez les trois premières lettres de votre nom de famille, et reliez les points correspondants sur la figure ci-dessous de façon à former un triangle Ressources pédagogiques en libre téléchargement à imprimer et/ou modifier. Public ciblé : élèves de 5ème Collège – Domaines : Géométrie Mathématiques Sujet : Triangles – 5ème – Cours – Exercices – Géométrie – Collège – Mathématiques Voir les fichesTélécharger les documents Une activité pour découvrir le résultat de la somme des angles…