Somme des angles d’un triangle – 5ème – Cours

Cours sur « Somme des angles d’un triangle » pour la 5ème

Notions sur « Les triangles »

Tapez une équation ici.

Propriété de la somme des angles d’un triangle.
Quel que soit le triangle ABC, on a :
(BAC) ̂ +( ABC) ̂ + (ACB) ̂ = 180°
Propriété :
La somme des mesures des trois angles d’un triangle est égale à 180°.

Exemple : Soit le triangle ABC ci-contre. Calculer l’angle (ACB) ̂.

(BAC) ̂ = 60° et (ABC) ̂ = 80°
La somme des mesures des angles du triangle ABC est égale à 180°.

(BAC) ̂ +( ABC) ̂ + (ACB) ̂ = 180°
(ACB) ̂ = 180°-(80°+60°)=180°-140°=40°

Le triangle rectangle.
(ABC) ̂+(BAC) ̂+(ACB) ̂=180°
90°+(BAC) ̂+(ACB) ̂=180°
(BAC) ̂+(ACB) ̂=90°

Propriété :
Dans un triangle rectangle, la somme des angles aigus est égale à 90° .

Le triangle rectangle isocèle
(ABC) ̂+(BAC) ̂+(ACB) ̂=180°
90°+(BAC) ̂+(ACB) ̂ = 180°
(BAC) ̂+(ACB) ̂=90°
Or (BAC) ̂=(ACB) ̂=45°

Propriété :
Dans un triangle rectangle isocèle, chaque angle aigu est égal à 45°.

Le triangle équilatéral
(ABC) ̂+(BAC) ̂+(ACB) ̂=180°
Or (ABC) ̂=(BAC) ̂=(ACB) ̂
3×(ACB) ̂=180°
(ABC) ̂=(BAC) ̂=(ACB) ̂=60°

Propriété :
Dans un triangle équilatéral, chaque angle est égal à 60°.

 



Cours – 5ème – Somme des angles d’un triangle pdf

Cours – 5ème – Somme des angles d’un triangle rtf

Tables des matières Triangles - Géométrie - Mathématiques : 5ème