Je révise mon brevet des collèges pas à pas avec Mon Pass Maths. Développer à l’aide d’une identité remarquable – 3ème Développer une identité remarquable. Développer une expression littérale. Utiliser l’identité remarquable pour du calcul astucieux. Questions de brevet. Pour aller plus loin. Prérequis : cours « Développer et réduire une expression littérale ». Développer avec la simple distributivité : k×(a+b)=k×a + k×b et k×(a-b)=k×a – k×b Développer avec la double distributivité : (a+b)×(c+d)=a×c+a×d+b×c+b×d Supprimer des parenthèses précédées d’un «…
Je révise mon brevet des collèges pas à pas avec Mon Pass Maths. Factoriser à l’aide d’une identité remarquable – 3ème Factoriser avec une identité remarquable. Factoriser une expression littérale. Questions de brevet. Pour aller plus loin. Prérequis : cours « Factoriser une expression littérale » et « Développer et réduire une expression littérale ». ▸ Factoriser une expression littérale, c’est transformer une somme (ou différence) en un produit. C’est le contraire de développer : → Il faut repérer le…
Je révise mon brevet des collèges pas à pas avec Mon Pass Maths. Développer et réduire une expression littérale – 3ème Simplifier une expression littérale sans parenthèses. Développer une expression littérale avec des parenthèses avec la distributivité. Questions de brevet. Pour aller plus loin. Prérequis : Une expression littérale est une suite d’un ou plusieurs calculs contenant au moins une lettre. Règles d’écriture: On peut supprimer le signe lorsqu’il est suivi d’une lettre ou d’une parenthèse : Cas particulier :…
Séquence complète pour la 3ème sur le calcul littéral : Synthèse. Cours pour la 3ème sur le calcul littéral : Synthèse. Notations et multiplications On peut supprimer des symboles de multiplication : 3×x=x×3=3x Cas particulier : 1×x=1x=x Notation : x×x=x^2 (≠2x) Multiplications: 3x×5=3×x×5=15x 3x×2x=3×x×2×x=6x^2 2a×5b=2×a×5×b=10ab Substitution SUBSTITUER : c’est remplacer une lettre par une valeur donnée. A=2x^2-7x+2 pour x=3 A=2×3^2-7×3+2 A=2×9-21+2 A=18-21+2 A=-1 → on fait réapparaître les « × » et on applique les priorités. Exercices avec les corrigés…
Cours pour la 3ème sur le calcul littéral : Synthèse. Notations et multiplications On peut supprimer des symboles de multiplication : 3×x=x×3=3x Cas particulier : 1×x=1x=x Notation : x×x=x^2 (≠2x) Multiplications: 3x×5=3×x×5=15x 3x×2x=3×x×2×x=6x^2 2a×5b=2×a×5×b=10ab Substitution SUBSTITUER : c’est remplacer une lettre par une valeur donnée. A=2x^2-7x+2 pour x=3 A=2×3^2-7×3+2 A=2×9-21+2 A=18-21+2 A=-1 → on fait réapparaître les « × » et on applique les priorités. Additions et soustractions REDUIRE : c’est ajouter ou soustraire les termes qui ont la même…
Exercices avec les corrigés pour la 3ème sur le calcul littéral : Synthèse. Consignes pour ces exercices : Sur chaque ligne, choisis la/les bonne(s) proposition(s) : Relie les expressions égales : Développe et réduis les expressions suivantes : Il existe différents cas de développements : Dans chaque expression, identifier le/les cas en indiquant le(s) numéro(s), puis développe et réduis si possible : Complète les factorisations suivantes : Complète les factorisations suivantes : Effectue les calculs suivants de façon astucieuse :…
Evaluation avec la correction pour la 3ème sur le calcul littéral : Synthèse. Evaluation des compétences Je sais développer, factoriser, et réduire des expressions littérales. Je sais résoudre des problèmes en utilisant le calcul littéral. Consignes pour cette évaluation : Simplifie si possible les expressions suivantes : Développe et réduis les expressions suivantes : Développe et réduis les expressions suivantes : Factorise si possible ces expressions : Effectue les calculs suivants de façon astucieuse : On considère le programme défini…
Séquence complète pour la 3ème sur factoriser avec une identité remarquable. Cours pour la 3ème sur les fonctions sur factoriser avec une identité remarquable. Rappel : Factoriser une expression littérale, c’est transformer une somme (ou différence) en un produit. C’est le contraire de développer : k×a+k×b=k×(a+b) et k×a-k×b=k×(a-b) → Il faut repérer le facteur commun. → On regroupe dans une parenthèse les autres facteurs, en addition ou soustraction. Exemples : 5x+5y=5×(x+y) 3x+12=3×x+3×4=3×(x+4) x^2-7x=x×x-7×x=x×(x-7) 4x(x+1)+3(x+1)=(x+1)×(4x+3) Exercices avec les corrigés pour…
Cours pour la 3ème sur les fonctions sur factoriser avec une identité remarquable. Rappel : Factoriser une expression littérale, c’est transformer une somme (ou différence) en un produit. C’est le contraire de développer : k×a+k×b=k×(a+b) et k×a-k×b=k×(a-b) → Il faut repérer le facteur commun. → On regroupe dans une parenthèse les autres facteurs, en addition ou soustraction. Exemples : 5x+5y=5×(x+y) 3x+12=3×x+3×4=3×(x+4) x^2-7x=x×x-7×x=x×(x-7) 4x(x+1)+3(x+1)=(x+1)×(4x+3) Factoriser à l’aide d’une identité remarquable : Soient a et b deux nombres quelconques, on…
Exercices avec les corrigés pour la 3ème sur factoriser avec une identité remarquable. Consignes pour ces exercices : ❶* Parmi les expressions suivantes, entoure celles qui correspondent à un produit, c’est-à-dire qui sont sous forme factorisée : ❷* Complète les factorisations suivantes : ❸* Factorise les expressions suivantes grâce à l’identité remarquable : ❹** 1. On cherche à calculer astucieusement 101^2-99^2. En identifiant ce calcul à a^2-b^2, que vaut a ? Que vaut b ? 2. Applique l’identité remarquable sous…
Evaluation avec la correction pour la 3ème sur factoriser avec une identité remarquable. Évaluation des compétences Je sais factoriser une expression littérale avec une identité remarquable. Je sais résoudre des problèmes en utilisant le calcul littéral. Consignes pour cette évaluation : Parmi les expressions suivantes, entoure celles que tu reconnais comme étant la différence de deux carrés : Factorise les expressions suivantes : Effectue astucieusement ces calculs : Factorise les expressions suivantes. Factorise les expressions suivantes : On considère le…
Séquence complète pour la 3ème sur développer à l’aide d’une identité remarquable. Cours pour la 3ème sur développer à l’aide d’une identité remarquable. On appelle identité remarquable une égalité mathématique qu’il est intéressant de reconnaître pour accélérer ou simplifier un calcul. Soient a et b deux nombres quelconques, on a : (a+b)(a-b)=a^2-b^2 Preuve : on peut appliquer la double distributivité : (a+b)(a-b)=a×a+a×(-b)+b×a+b×(-b)=a^2-ab+ba-b^2=a^2-b^2 Remarque : l’ordre des parenthèses n’a pas d’importance : (a+b)(a-b)=(a-b)(a+b) Méthode : pour développer à l’aide de cette…
Cours pour la 3ème sur développer à l’aide d’une identité remarquable. On appelle identité remarquable une égalité mathématique qu’il est intéressant de reconnaître pour accélérer ou simplifier un calcul. Soient a et b deux nombres quelconques, on a : (a+b)(a-b)=a^2-b^2 Preuve : on peut appliquer la double distributivité : (a+b)(a-b)=a×a+a×(-b)+b×a+b×(-b)=a^2-ab+ba-b^2=a^2-b^2 Remarque : l’ordre des parenthèses n’a pas d’importance : (a+b)(a-b)=(a-b)(a+b) Méthode : pour développer à l’aide de cette identité remarquable : ① on repère l’identité remarquable ; ② on identifie…
Exercices avec les corrigés pour la 3ème sur développer à l’aide d’une identité remarquable. Consignes pour ces exercices : Entoure la/les bonne(s) propositions : Entoure les expressions littérales que tu reconnais comme étant la forme (a+b)(a-b) de l’identité remarquable : Colorie d’une même couleur l’expression avec parenthèses et l’expression développée qui lui est égale : Développe les expressions suivantes à l’aide de l’identité remarquable : Développe et réduis l’expression E=(x-5)(x+5) : ….. Des élèves ont répondu à la consigne :…
Evaluation avec la correction pour la 3ème sur développer à l’aide d’une identité remarquable. Évaluation des compétences Je sais développer et réduire une expression littérale avec une identité remarquable. Je sais résoudre des problèmes en utilisant le calcul littéral. Consignes pour cette évaluation : Développe et réduis les expressions suivantes : Développe et réduis les expressions suivantes : Calcule astucieusement : Deux frères se partagent un terrain reçu en héritage. L’un d’eux annonce : « Je ne me souviens plus…
Séquence complète pour la 3ème sur développer et réduire une expression littérale. Cours pour la 3ème sur développer et réduire une expression littérale. Notations et multiplications : Avec les lettres, on peut supprimer des symboles de multiplication : 3×x=x×3=3x Multiplier plusieurs facteurs peut se faire dans n’importe quel ordre : Additions et soustractions : On peut ajouter ou soustraire les termes qui ont la même partie littérale : les x ensemble, les a ensemble, les x^2 ensemble, etc. On dit…
Cours pour la 3ème sur développer et réduire une expression littérale. Notations et multiplications : Avec les lettres, on peut supprimer des symboles de multiplication : 3×x=x×3=3x Cas particulier : 1×x=1x=x Notation : x×x=x^2 à ne pas confondre avec 2x : si x=3,x^2=3^2=3×3=9 ≠ 2x=2×3=6 Multiplier plusieurs facteurs peut se faire dans n’importe quel ordre : 3x×5=3×x×5=3×5×x=15×x=15x 3x×2x=3×x×2×x=3×2×x×x=6〖×x〗^2=6x^2 2a×5b=2×a×5×b=2×5×a×b=10×a×b=10ab Additions et soustractions : On peut ajouter ou soustraire les termes qui ont la même partie littérale : les…
Exercices avec les corrigés pour la 3ème sur développer et réduire une expression littérale. Consignes pour ces exercices : Simplifier et réduire si possible les expressions suivantes : Supprime les parenthèses et réduis les expressions suivantes : Développe et réduis les expressions suivantes : Développe et réduis les expressions suivantes : Développe et réduis les expressions suivantes. Victor doit effectuer le calcul 12×99. Voici le schéma d’un programme de calcul. On considère le carré VERT, de côté 5x-3 : ❶*…
Evaluation avec la correction pour la 3ème sur développer et réduire une expression littérale. Évaluation des compétences Je sais réduire des expressions algébriques. Je sais développer par simple et double distributivités. Consignes pour cette évaluation : Colorie la/les égalités justes : Développe et réduis les expressions suivantes : Développe et réduis les expressions suivantes : On considère les programmes de calcul suivants : Sur la figure ci-contre, ABCD est un carré et ABEF est un rectangle. ❶ Colorie la/les égalités…
Séquence complète pour la 4ème sur la synthèse calcul littéral. Cours pour la 4ème sur la synthèse calcul littéral. Enlever les parenthèses précédées d’un signe + ou – : Lorsqu’une parenthèse est précédée d’un signe + on peut enlever cette parenthèse en conservant les signes à l’intérieur de celle-ci. Exemples : 5+(2x-1)=5+2x-1 Réduire une expression littérale : Réduire une expression littérale, c’est l’écrire avec le moins de termes possible. Méthode : Pour réduire une expression littérale, il faut supprimer les…
Cours pour la 4ème sur la synthèse calcul littéral. Enlever les parenthèses précédées d’un signe + ou – : Lorsqu’une parenthèse est précédée d’un signe + on peut enlever cette parenthèse en conservant les signes à l’intérieur de celle-ci. Exemples : 5+(2x-1)=5+2x-1 Réduire une expression littérale : Réduire une expression littérale, c’est l’écrire avec le moins de termes possible. Méthode : Pour réduire une expression littérale, il faut supprimer les parenthèses si besoin et regrouper tous les termes…
Exercices avec la correction pour la 4ème sur la synthèse calcul littéral. Consignes pour ces exercices : Pour chaque expression littérale, indiquez si elle est écrite sous sa forme factorisée, développée réduite ou développée non réduite. Réduis les expressions littérales suivantes. Réduis les expressions littérales suivantes. Développe les expressions littérales suivantes en donnant l’écriture la plus simple. Développe puis réduis les expressions littérales suivantes. Factorise les expressions littérales suivantes. Factorise puis réduis les expressions littérales suivantes, comme dans l’exemple :…
Evaluation avec les corrigés pour la 4ème sur la synthèse calcul littéral. Évaluation des compétences Je sais identifier la forme (développée, factorisée….. ) d’une expression littérale. Je sais réduire et développer une expression littérale. Je sais repérer un facteur commun à deux termes et factoriser une expression littérale. Consignes pour cette évaluation : Pour chaque expression littérale, indiquez si elle est écrite sous sa forme factorisée, développée réduite ou développée non réduite. Réduis les expressions littérales suivantes. Développe puis réduis…
Séquence complète pour la 4ème sur réduire une expression littérale. Cours pour la 4ème sur réduire une expression littérale. Rappels Définition (rappel) : Une expression est une suite d’un ou plusieurs calculs. Une expression littérale est une expression contenant au moins une lettre. Exemples : A=3×x-2 ; B=y^2+1 ou encore C=2×x-3×y sont des expressions littérales. Propriété : On peut supprimer le signe × Lorsqu’il est suivi d’une lettre ou d’une parenthèse. Exemples : Les expressions littérales A et C ci-dessus…
Cours pour la 4ème sur réduire une expression littérale. Rappels Définition (rappel) : Une expression est une suite d’un ou plusieurs calculs. Une expression littérale est une expression contenant au moins une lettre. Exemples : A=3×x-2 ; B=y^2+1 ou encore C=2×x-3×y sont des expressions littérales. Propriété : On peut supprimer le signe × Lorsqu’il est suivi d’une lettre ou d’une parenthèse. Exemples : Les expressions littérales A et C ci-dessus peuvent s’écrire 3x-2 et 2x-3y. Réduire une expression littérale…
Exercices avec la correction pour la 4ème sur réduire une expression littérale. Consignes pour ces exercices : Complète la phrase du cours : « Réduire une expression littérale, c’est l’écrire ….. Parmi les expressions littérales suivantes, entoure celles qui sont réduites au maximum. Relie chaque expression littérale à son expression littérale réduite. Pour chaque question, une seule proposition est juste. Entoure-la. Comme l’exemple, souligne de différentes couleurs les termes qui se réduisent ensemble : Réduis les expressions littérales suivantes. Réduis…
Evaluation avec les corrigés pour la 4ème sur réduire une expression littérale. Évaluation des compétences Je sais réduire une expression littérale. Consignes pour cette évaluation : Entoure d’une même couleur les expressions littérales égales. Tu as besoin de 3 couleurs différentes. Pour chaque question, une seule proposition est juste. Entoure-la. Réduis les expressions littérales suivantes. Réduis les expressions littérales suivantes. Donne une expression littérale du périmètre de la figure ci-dessous et réduis cette expression. Les longueurs sont données en cm….
Séquence complète pour la 4ème sur réduire une expression littérale (2). Cours pour la 4ème sur réduire une expression littérale (2). Rappel : On sait déjà développer une expression littérale grâce à la simple distributivité : k×(a+b) =k×a+k×b et k×(a-b)=k×a-k×b Double distributivité : On peut illustrer la double distributivité comme l’aire d’un rectangle : → Aire totale du rectangle : (a+b)×(c+d) → Aire décomposée comme la somme des 4 petits rectangles : a×c+a×d+b×c+b×d Soient a, b, c et d…
Cours pour la 4ème sur réduire une expression littérale (2). Rappel : On sait déjà développer une expression littérale grâce à la simple distributivité : k×(a+b) =k×a+k×b et k×(a-b)=k×a-k×b Double distributivité : On peut illustrer la double distributivité comme l’aire d’un rectangle : → Aire totale du rectangle : (a+b)×(c+d) → Aire décomposée comme la somme des 4 petits rectangles : a×c+a×d+b×c+b×d Soient a, b, c et d des nombres quelconques, on a : (a+b)×(c+d)=a×c+a×d+b×c+b×d Exemples : (4t+3)×(t+5)=4t×t+4t×5+3×t+3×5=4t^2+20t+3t+15=4t^2+23t+15 (2u-1)(4u+3)=2u×4u+2u×3+(-1)×4u+(-1)×3=8u^2+6u-4u-3=8u^2+2u-3…
Exercices avec la correction pour la 4ème sur réduire une expression littérale (2). Consignes pour ces exercices : Colorie d’une même couleur l’expression avec parenthèses et l’expression sans parenthèses qui lui est égale : Supprime les parenthèses puis réduis les expressions : Supprime les parenthèses puis réduis les expressions : Complète les tableaux de multiplication puis, à l’aide de ceux-ci, développe puis réduis les expressions : Complète les doubles distributivités suivantes. Développe les expressions suivantes grâce à la double distributivité,…