Cours pour la 4ème sur les triangles égaux (ou isométriques). Définition Deux triangles sont dits égaux (ou isométriques) si leurs côtés sont deux à deux de même longueur. Exemple : Ci-contre, les triangles ABC et DEF sont égaux. Conséquence : Des triangles égaux sont superposables et leurs angles ont la même mesure. Remarque : Deux triangles ayant leurs angles deux à deux de même mesure ne sont pas nécessairement égaux. Vocabulaire : Lorsque deux triangles sont égaux, deux angles, sommets…
Cours pour la 5ème sur construire un triangle et ses droites. Construire un triangle à partir des longueurs de 2 côtés et l’angle qu’ils forment : Exemple : Triangle ABC avec AB = 4 cm, AC = 5 cm et = 50°. Je trace un segment [AB] de 4 cm. Avec le rapporteur je trace une demi-droite d’origine A pour former un angle de 50°. A partir de A, je mesure 5 cm (règle ou compas) sur cette demi-droite. Je…
Cours pour la 5ème sur les angles et les triangles. Somme des angles : Propriété : Dans un triangle, la somme des 3 angles est égale à 180°. Autrement dit, pour tout triangle ABC on a : (ABC) ̂ + (ACB) ̂ + (BAC) ̂ = 180°. Exemple : Si (ABC) ̂ = 64,8° et (ACB) ̂ = 84, alors (BAC) ̂ = 180 – 64,8 – 84 = 31,2°. Remarque : Si la somme des angles n’est pas égale…
Cours de géométrie sur les triangles particuliers en 6ème. Définitions : Définition Propriété Un triangle isocèle est un triangle qui possède deux côtés de même longueur. Dans un triangle isocèle, les angles à la base sont de même mesure. Triangle ABC isocèle en C. Un triangle équilatéral est un triangle qui possède trois côtés de même longueur. Dans un triangle équilatéral, les 3 angles sont de même mesure : 60°. Triangle EFD équilatéral. Un…
Cours sur “Inégalité triangulaire” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Le plus court chemin pour aller d’un point à un autre est le segment qui relie ces deux points. Donc dans un triangle, la longueur de n’importe quel côté est inférieure à la somme de la longueur des deux autres côtés. Si A, B et M sont les trois sommets d’un triangle, alors AB<AM+MB Cette inégalité s’appelle l’inégalité triangulaire. Cas particulier : l’égalité Si AB=AC+CB…
Cours sur “Construction d’un triangle quand on connait les trois côtés” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Construire le triangle ABC tel que : AB = 6 cm AC = 4 cm BC = 5 cm. Ce triangle existe car 6<4+5. On construit un des 3 côtés, par exemple le segment [AB] de longueur 6 cm. Avec le compas, on trace un arc de cercle de centre A et de rayon 4 cm. Avec le…
Cours sur “Construction d’un triangle quand on connait deux côtés et un angle” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Construire le triangle ABC tel que : ( BAC) ̂= 40° AB=6 cm AC=7 cm On construit le segment [AB] de longueur 6 cm. À l’aide du rapporteur, on construit un angle de 40° de sommet A et dont un côté est la demi-droite [AB). On place le point C sur la demi-droite à 7 cm…
Cours sur “Construction d’un triangle connaissant deux angles et un côté” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Construire le triangle ABC tel que : ( BAC) ̂= 40° (ABC) ̂ = 60° AB = 5 cm On trace le segment [AB] de longueur 5 cm. À l’aide du rapporteur, on construit un angle de 40° de sommet A et dont un côté est la demi-droite [AB). À l’aide du rapporteur, on construit un angle de…
Cours sur “Somme des angles d’un triangle” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Propriété de la somme des angles d’un triangle. Quel que soit le triangle ABC, on a : (BAC) ̂ +( ABC) ̂ + (ACB) ̂ = 180° Propriété : La somme des mesures des trois angles d’un triangle est égale à 180°. Exemple : Soit le triangle ABC ci-contre. Calculer l’angle (ACB) ̂. (BAC) ̂ = 60° et (ABC) ̂ = 80°…
Cours sur “Définition et construction des médiatrices” pour la 5ème Notions sur “Les triangles” Tapez une équation ici. Définition : La médiatrice d’un segment [AB] est la droite (d) perpendiculaire à ce segment et passant par son milieu I. Construction de la médiatrice à l’équerre. Etape 1 Avec une règle graduée on mesure le segment [AB] puis on place son milieu I (en divisant la distance AB par 2 mentalement ou à la calculette). Etape 2 On trace à l’aide…
Cours sur “Propriété de la médiatrice et construction au compas” pour la 5ème Notions sur “Les triangles” Propriété de la médiatrice d’un segment. Tout point situé sur la médiatrice d’un segment est à égale distance des extrémités de ce segment. Si un point M se situe sur la médiatrice de [AB] alors MA=MB Si un point M est tel que : AM=BM, alors le point M appartient à la médiatrice du segment [AB]. Donc M appartient à la médiatrice de…
Cours sur “Les hauteurs d’un triangle” pour la 5ème Notions sur “Les triangles” Définition : La hauteur issue d’un sommet dans un triangle est la droite passant par ce sommet et perpendiculaire au côté opposé. Attention : Il faut parfois prolonger le côté [BC] pour pouvoir tracer la hauteur issue de A. Construction d’une hauteur On place un côté de l’équerre sur (BC), l’autre côté de l’équerre passe par A. Il faut parfois prolonger en pointillés le côté [BC], l’autre…
Cours sur “Triangles égaux” pour la 4ème. Notions sur “Les triangles” Définition : Deux triangles sont superposables lorsqu’on peut les faire coïncider par glissement (translation) ou par glissement suivi d’un retournement. Des triangles égaux sont des triangles superposables, c’est-à-dire qui ont des côtés 2 à 2 de même longueur et des angles 2 à 2 de même mesure. Lorsque deux triangles sont égaux, deux angles superposables sont dits angles homologues ainsi que leurs sommets, deux côtés superposables sont dits côtés…
Cours sur “Cas d’égalité des triangles” pour la 4ème. Notions sur “Les triangles” Premier cas d’égalité. Si deux triangles ont un côté de même longueur et des angles adjacents à ce côté deux à deux de même mesure, alors ces deux triangles sont égaux. Exemple : On sait que : AB=FH (BAC) ̂=(HFG ) ̂ (ABC) ̂=(FHG) ̂ Or, si deux triangles ont un côté de même longueur et des angles adjacents à ce côté deux à deux de même…
Cours sur “Triangles semblables” pour la 4ème. Notions sur “Les triangles” Définition : Des triangles semblables sont des triangles qui ont leurs angles deux à deux de même mesure. Les triangles ABC et A’B’C’ sont semblables. Remarque : Si deux triangles sont égaux, alors ils sont semblables. En revanche, deux triangles semblables ne sont pas forcément égaux. Propriété Si deux triangles ont deux angles deux à deux de même mesure, alors ces triangles sont semblables. En effet : La somme…
Cours sur “Les triangles particuliers” pour la 6ème Notions sur “Figures usuelles” Le triangle rectangle Un triangle rectangle est un triangle qui a un angle droit. Le côté opposé à l’angle droit s’appelle l’hypoténuse. On dit que le triangle ABC est rectangle en A car l’angle droit est l’angle A ̂. Le triangle isocèle Un triangle isocèle est un triangle qui a deux côtés de même longueur. On dit que le triangle ABC est isocèle en A et que A…
Cours sur “Construire un triangle” pour la 6ème Notions sur “Figures usuelles” Construire un triangle dont on connait les longueurs des trois côtés : Construire un triangle ABC tel que “AB=2,8 cm” , “BC=3,7 cm” et “AC=5 cm ” : Étape N°1 : On trace un segment [AB] de longueur 2,8 cm. Étape N°2 : On trace un arc de cercle de centre A et de rayon “5 cm” car “AC=5 cm” . On trace un arc de cercle de…
Cours sur “Les hauteurs d’un triangle” pour la 6ème Notions sur “les figures usuelles” La notion de hauteur est importante car cela nous permettra, dans le chapitre 16, de calculer l’aire d’un triangle. Définition : Dans un triangle, la hauteur issue d’un sommet est la droite qui passe par ce sommet et qui coupe perpendiculairement le côté opposé à ce sommet (ou son prolongement). On dit que la droite (AH) est la hauteur issue de A dans le triangle ABC….
Cours à imprimer pour la 6ème – Figures Usuelles: Triangles Triangles Un triangle est un polygone à 3 cotés. Triangle particulier Triangle isocèle Un triangle isocèle est un triangle qui à deux cotés de même longueur. Triangle équilatéral Un triangle équilatéral est un triangle qui à tous ces côtés de la même longueur. Triangle rectangle Un triangle rectangle est un triangle qui a un angle droit. Quadrilatères Un quadrilatère est un polygone à 4 côtés. Rectangle Un rectangle est un…
Droite des milieux – 4ème – Cours – Géométrie Droite des milieux Dans un triangle, la droite qui passe par les milieux de deux côtés est parallèle au troisième côté. La longueur du segment qui joint ces deux milieux est égale à la moitié de la longueur du troisième côté. Milieu et parallèle Dans un triangle, la droite qui passe par le milieu d’un côté et qui est parallèle à un second côté, coupe le troisième côté…
Distance d’un point à une droite – Cours – 4ème – Triangle – Géométrie Introduction à la distance d’un point à une droite A, B, C, D et E sont cinq points distincts alignés dans cet ordre sur une droite (d). M est un point n’appartenant pas à la droite (d), tel que (MC) est perpendiculaire à (d). Parmi les distances MA, MB, MC, MD et ME, quelle est la plus courte ? Le triangle MAC est un triangle rectangle…
Bissectrices – 4ème – Cours – Géométrie Bissectrice d’un angle La bissectrice d’un angle est la droite qui coupe cet angle en deux angles égaux. L’angle xAy = L’angle yAz donc (Ay) est la bissectrice de l’angle xAz Remarque : la bissectrice d’un angle est un axe de symétrie pour cet angle. B et B’ sont symétriques par rapport à la bissectrice (Ay) Propriété : Si un point M appartient à la bissectrice d’un angle, alors M est à égale…
Triangle rectangle – Cercle circonscrit – 4ème – Cours – Géométrie Cercle circonscrit à un triangle rectangle Propriété 1 Si un triangle est rectangle alors le centre de son cercle circonscrit est le milieu de l’hypoténuse. Propriété 1 bis Si un triangle est rectangle alors son hypoténuse est un diamètre de son cercle circonscrit. Propriété 2 Si un triangle est rectangle alors l’hypoténuse a pour longueur le double de celle de la médiane issue du sommet de l’angle droit….
Deux parallèles coupant deux sécantes – 4ème – Cours – Géométrie Propriété Si deux droites parallèles coupent deux droites sécantes, alors elles déterminent deux triangles dont les côtés sont proportionnels. Application Dans un triangle ABC, M est un point du côté [AB] distinct de A et de B, N est un point du côté [AC] distinct de A et de C. Si la droite (MN) est parallèle à la droite (BC) alors AM/AB = AN/AC = MN/BC…
Agrandissement – Réduction d’un triangle – Cours – 3ème – Géométrie Définition Si [AM] et [AN] sont deux droites de même origine et si (MN) et (BC) sont deux droites parallèles alors AM/AB=AN/AC=MN/BC ou AB/AM=AC/AN=BC/MN. On retrouve la configuration du théorème de Thalès avec le type de figure dans lequel on peut l’appliquer : « deux demi-droites de même origine et deux parallèles » ou bien « un triangle et une droite parallèle à un côté ». AM/AN,…
Triangles – Cours – 5ème – Géométrie Construction de triangles Si on connaît la longueur des 3 côtés: Voici, la méthode à travers un exemple. Construire un triangle ABC tel que AB = 4 cm, BC = 2,5 cm et AC = 3,5 cm. 1) On trace un segment [AB] de 4 cm. 2) On trace deux arcs de cercle : – un de centre A et de rayon 3,5 cm – un de centre B et de rayon…
Triangle – Milieux – Parallèles – 4ème Définition : Le carré d’un nombre positif est le produit de ce nombre par lui-même. Si c est un nombre positif, alors le carré de c se note c2, se prononce “c au carré”, et est égal à c ×c. On utlise ce terme car, lorsque l’on veut calculer l’aire d’un carré, onmultiplie la longueur du côté de ce carré par lui-même. On a ainsi la formuleAcarré = c ×c = c2 Ressources…
Triangle rectangle – Cercle circonscrit – 4ème Dans chacun des cas suivants, tracer lesmédiatrices des trois côtés du triangle, puis le cercle circonscrit au triangle ; qu’observez-vous quant à la position du cercle circonscrit ? Ressources pédagogiques en libre téléchargement à imprimer et/ou modifier. Public ciblé : élèves de 4ème Collège – Domaines : Géométrie Mathématiques Sujet : Triangle rectangle – Cercle circonscrit – 4ème – Géométrie – Cours – Exercices – Collège – Mathématiques Voir les fichesTélécharger les documents…
Triangles – 5ème Prenez les trois premières lettres de votre nom de famille, et reliez les points correspondants sur la figure ci-dessous de façon à former un triangle Ressources pédagogiques en libre téléchargement à imprimer et/ou modifier. Public ciblé : élèves de 5ème Collège – Domaines : Géométrie Mathématiques Sujet : Triangles – 5ème – Cours – Exercices – Géométrie – Collège – Mathématiques Voir les fichesTélécharger les documents Une activité pour découvrir le résultat de la somme des angles…