Séquence complète pour la 3ème sur le calcul de volumes. Cours pour la 3ème sur le calcul de volumes. Rappels : formules Volume=aire de la Base×hauteur Le cube V_cube=c×c×c =c^3 Le pavé droit V_pavé=l×L×h Le prisme droit V_prisme=A_base×h Le cylindre V_cylindre=π×r^2×h Volume=aire de la Base×hauteur/3 La boule V_boule= 4/3 ×π×r^3 La pyramide V_pyramide=A_base× h/3 Exercices avec les corrigés pour la 3ème sur le calcul de volumes. Consignes pour ces exercices : Complète la leçon puis remplis le tableau. Le volume…
Séquence complète sur les volumes pour la 3ème sur la boule et sphère. Cours sur les volumes pour la 3ème sur la boule et sphère. La sphère : La sphère de centre O et de rayon r est l’ensemble des points M du plan tels que OM=r. Une sphère est donc « vide » : il s’agit d’un objet en 2 dimensions, dont on peut calculer l’aire. Calcul de l’aire : l’aire A d’une sphère de rayon r est donnée…
Séquence complète pour la 4ème sur le calcul des volumes (pyramides et cône de révolution). Cours pour la 4ème sur le calcul des volumes. Définitions : Le volume est la quantité d’espace qu’occupe un objet. Il est mesuré en unité cubique. Une pyramide est un solide qui a pour base un polygone et pour faces latérales des triangles qui ont un sommet en commun. Un cône de révolution est un solide obtenu par la rotation d’un triangle rectangle autour de…
Séquence complète pour la 5ème sur le volume des solides complexes. Cours pour la 5ème sur le volume des solides complexes. Addition de volumes: Propriété : Lorsque l’on considère plusieurs solides, leur volume total est égal à la somme des volumes de chacun des solides. Remarque : Cela fonctionne de la même façon que pour les aires ! Cela peut sembler évident mais attention, ce n’était pas le cas pour les périmètres ! Exemple : Je souhaite ajouter 3 glaçons…
Séquence complète pour la 5ème sur le volume des solides usuels. Cours pour la 5ème sur le volume des solides usuels. Pavé droit: Définition : Un pavé droit est un solide à 6 faces qui sont toutes des rectangles. Propriété : Le volume d’un pavé droit de longueur L, largeur l et hauteur h est donné par : V = L × l × h. Exemple : Le volume du pavé droit ci-contre est de : V = 3 ×…
Séquence complète pour la 5ème sur convertir des unités de volume et de contenance. Cours pour la 5ème sur convertir des unités de volume et de contenance. Unités de volume : Définition : Le volume d’un solide correspond à la mesure de sa partie intérieure. L’unité principale du volume est le mètre cube m3. Remarque : 1 mètre cube correspond au volume d’un cube de côté 1 m. 1 centimètre cube correspond au volume d’un cube de côté 1 cm…
Séquence complète pour la 5ème sur convertir des unités d’aire. Cours pour la 5ème sur convertir des unités d’aire. Unités de longueur : Définition : L’aire d’une figure correspond à la mesure de sa surface, c’est-à-dire de la partie intérieure de cette figure. L’unité de mesure de l’aire est le mètre carré noté m². Remarque : Un mètre carré correspond à l’aire d’un carré de côté 1 m x 1 m. On utilise le tableau de conversion : Multiples…
Séquence complète sur “Aires des figures complexes” pour la 6ème Notions sur “Aires” Cours sur “Aires des figures complexes” pour la 6ème Pour calculer l’aire d’une figure complexe, il y a plusieurs techniques : On peut calculer l’aire d’une figure en la décomposant en figures plus simples dont on connait l’aire. Calculer l’aire de la figure ci-dessous au dixième près : On décompose cette figure en figures plus simples dont on connait l’aire : Aire de la figure jaune =…
Séquence complète sur “Aire du disque” pour la 6ème Notions sur “Aires” Cours sur “Aire du disque” pour la 6ème Aire d’un disque de rayon r = π×r² Exemples : Calculer l’aire d’un disque de rayon 6 cm A= π×6^2=36× π≈113,04 cm² Calculer l’aire d’un disque de diamètre 10 cm Attention : * Pour calculer l’aire d’un disque, connaissant le diamètre, il faut d’abord penser à calculer le rayon de ce cercle. Rayon=Diamètre÷2=10÷2=5 cm A= π×5^2=25× π≈78,5 cm² Attention à…
Séquence complète sur “Aire des figures usuelles” pour la 6ème Notions sur “Aires” Cours sur “Aire des figures usuelles” pour la 6ème Aire du rectangle : Aire = Longueur×largeur Aire du carré Aire = Côté×Côté Aire du triangle Aire = (base×hauteur)/2 Comme nous l’avons vu dans le chapitre 12-4, on peut tracer trois hauteurs. Par conséquent, on peut appliquer la formule de trois façons différentes. On regarde bien les longueurs que l’on connait. Si le triangle est rectangle Pour un…
Séquence complète sur “Unités d’aire” pour la 6ème Notions sur “Aires” Cours sur “Unités d’aire” pour la 6ème L’aire d’une figure est la mesure de sa surface. Dans la vie quotidienne, on peut être amené à calculer une aire, par exemple, quand on cherche la quantité de peinture à acheter pour couvrir un mur rectangulaire Pour calculer une aire, on définit d’abord une unité. Dans la vie courante, l’unité choisie par le système international est le m². 1 m² correspond…