Cours - Mathématiques : Terminale S – TS

Cours à imprimer et modifier de la catégorie Mathématiques : Terminale S – TS, fiches au format pdf, doc et rtf.

Cours Mathématiques : Terminale S – TS

Matrices – Terminale S – Cours – Définition

Cours sur les matrices en terminale S – Définition Définitions et vocabulaire matrice: Soit un couple d’entiers naturels non-nuls On appelle matrice de dimension (on ne calcule pas la valeur de ce produit ) ou de format tout tableau rectangulaire de nombres, appelés coefficients de la matrice. Ces coefficients sont disposés sur n lignes et p colonnes. On note une matrice par une lettre majuscule et ses coefficients par la même lettre minuscule à laquelle on affecte deux indices, le…

Lire la suite

Loi binomiale – Terminale S – Cours

Cours de terminale S sur la loi binomiale – TleS Loi binomiale Une épreuve de Bernoulli de paramètres p (pϵ] 0 ; 1[) est une épreuve ayant exactement deux issues, dont l’une, appelée « succès » a une probabilité égale à p (la probabilité de l’échec est égale à Un schéma de Bernoulli de paramètres n et p est une expérience aléatoire qui consiste à répéter n fois des conditions indépendantes une même épreuve de Bernoulli de paramètres p. A…

Lire la suite

Lois de probabilité sur un ensemble fini – Terminale S – Cours

Cours sur les lois de probabilité sur un ensemble fini – Terminale S Définition Soit Ω= { , ,….. , } un ensemble fini. On définit une loi de probabilité sur Ω en donnant la probabilité de chaque issue, c’est-à-dire les nombres , ,….. , tels que : · Pour tout i de {1,2,….. , n}, ; pi est la probabilité élémentaire de l’événement {ai} et on note pi=p({ai}) ou parfois plus simplement p(ai). La probabilité d’un événement E est…

Lire la suite

Divisibilité dans Z et Division euclidienne dans Z – Terminale S- Cours

Cours de terminale S sur la divisibilité dans Z et Division euclidienne dans Z Divisibilité Soient a, b et c trois entiers relatifs. On dit que b divise a (ou que b est un diviseur de a ou encore a est un multiple de b) lorsqu’il existe un entier relatif k tel que a = b x k. « b divise a » se note b/a. Un entier relatif a différent de 0 ; 1 et – 1 a toujours…

Lire la suite

Produit scalaire de deux vecteurs – Terminale S – Cours

Cours tle S sur le produit scalaire de 2 vecteurs – Terminale S Produit scalaire de deux vecteurs Définitions: Dans l’espace, comme dans le plan, le produit scalaire de deux vecteurs est défini par : Si sont non nuls, alors cette définition est équivalente à : Dans un repère orthonormé, si les coordonnées de et celles de alors : Expression avec des points: Soient A, B et C trois points de l’espace et deux vecteurs Si H est le point…

Lire la suite

Théorème d’incidence – Terminale S – Cours

Cours de terminale S – Théorème d’incidence – Terminale S Théorème d’incidence Si P est un plan contenant une droite d et si d’ est une droite parallèle à d, alors soit d’ appartient à P soit d’ est parallèle à P. Si d et d’ sont deux droites sécantes chacune parallèles au plan P, alors elles déterminent un plan P’ parallèle à P. Pour démontrer que deux plans P et P’ sont parallèles, il suffit donc de déterminer deux…

Lire la suite

Comparaison et lever une indétermination – Terminale S – Cours

Tle S – Cours – Comparaison et lever une indétermination – Terminale S Comparaison Théorème: Remarque : peut désigner +∞ ou -∞ ou un réel fini. Lever une indétermination Etape à suivre pour lever une indétermination à travers des exemples d’application : On commence par constater l’indétermination. Les quatre formes indéterminées sont : Dans un cas indéterminé on ne peut pas conclure, il est donc nécessaire de lever l’indétermination. Plusieurs techniques peuvent être utilisées, par exemple : On peut factoriser…

Lire la suite

Suites majorées et suites minorées – Terminale S – Cours

Tle S – Cours sur les suites majorées et suites minorées en terminale S Une suite u est majorée si, et seulement si, il existe un réel M tel que pour tout entier naturel n, Une suite u est minorée si, et seulement si, il existe un réel m tel que pour tout entier naturel n, Une suite u est bornée si, et seulement si, elle est à la fois majorée et minorée. Si une suite est croissante et converge…

Lire la suite

Raisonnement par récurrence – Terminale S – Cours

Cours de Terminale S sur le raisonnement par récurrence – Tle Modes de génération d’une suite numérique Par une formule explicite La suite u est définie de manière explicite lorsque chaque terme s’exprime directement en fonction de n. Exemple : Pour tout n ≥ 0, les suites u et v sont définies par les formules explicites suivantes : Ces formules permettent de calculer directement un terme de rang quelconque. Par exemple, pour les deux suites, le terme de rang 4…

Lire la suite

Mathématiques : Terminale S – TS - Cours

Page 1 / 7 :12345...7

Tables des matières Mathématiques : Terminale S – TS