Cours, exercices et évaluation corrigés à imprimer et modifier de la catégorie Fonctions - Généralités - Fonctions - Mathématiques : Terminale, fiches au format pdf, doc et rtf.
Limite d'une fonction - Fonctions - Généralités - Fonctions - Mathématiques : TerminaleLimite d'une fonction 10Continuité d'une fonction - Fonctions - Généralités - Fonctions - Mathématiques : TerminaleContinuité d'une fonction 4Intégrale et primitive - Fonctions - Généralités - Fonctions - Mathématiques : TerminaleIntégrale et primitive 8Dérivée d'une fonction - Fonctions - Généralités - Fonctions - Mathématiques : TerminaleDérivée d'une fonction 6
Exercices tleS corrigés à imprimer – Intégrale d’une fonction continue et positive – Terminale S Exercice 01 : Calcul d’aire avec un repère. Soit f une fonction continue sur ℝ et sa courbe représentative dans un repère orthonormé d’unité graphique de 1.5 cm. Quelle est, en cm2 l’aire A du domaine D délimité par, l’axe des abscisses et les droites d’équations ? Exercice 02 : Figure composée On cherche à calculer l’aire sous la courbe de la fonction f représentée…
Tle S – Cours sur l’intégrale d’une fonction continue et positive – Terminale S Définition Dans un repère orthogonal , on appelle unité d’aire l’aire du rectangle de côtés [OI] et [OJ]. Soient a et b deux nombres réels tels que a < b. soit f une fonction continue et positive sur l’intervalle [a ; b] et φ sa courbe représentative dans un repère orthogonal. On appelle l’intégrale de a à b de f et on note , l’aire, exprimée…
Exercices à imprimer tle S – Propriétés de l’intégrale – Terminale S Exercice 01 : La valeur moyenne Soit la fonction f définie sur [0 par : On donne dans un repère orthonormé la courbe représentative de la fonction f. Etudier les variations de f sur [0 ; π]. Démontrer que Calculer, en unité d’aire, l’aire sous la courbe sur [0 ; π]. En déduire la valeur moyenne de f sur [0 ; π]. Exercice 02 : Encadrement d’une intégrale…
Tle S – Cours sur les propriétés de l’intégrale – Terminale S Soient f et g deux fonctions continues sur un intervalle I ; a, b et c éléments de I. Relation de Chasles Linéarité Pour tout réel k, on a : Positivité et ordre (encadrement) Si a < b et si f est positive sur [a ; b], alors le nombre est positif. Si a < b et si, pour tout x de [a ; b],, alors . Si…
Exercices corrigés Tle S – Primitives d’une fonction – Terminale S – Fonctions Exercice 01 : Une primitive Déterminer une primitive F de la fonction f définie sur ℝ par : Exercice 02 : Primitives d’une même fonction Soient F et G les fonctions définies sur ℝ par Montrer que F et G sont des primitives de la même fonction f sur ℝ. Exercice 03 : Les primitives Soient f et g deux fonctions définies sur ℝ par Déterminer la…
Tle S – Cours sur les fonctions – Primitives d une fonction – Terminale S Définition et propriétés Définition Soit f une fonction définie sur un intervalle I. on appelle primitive de f sur I toute fonction F dérivable sur I telle que, pour tout réel x de I, Propriétés Soit F une primitive de f sur un intervalle I. Toutes les primitives de f sur I sont les fonctions G définies sur I par désigne un nombre réel quelconque….
Tle S – Exercices corrigés à imprimer – Intégrales et primitives – Terminale S Exercice 01 : Calcul des intégrales Calculer les intégrales suivantes : Exercice 02 : Dérivée puis intégrale Soit la fonction f définie sur par : et φ sa courbe représentative dans un repère orthonormé. Quel est le signe de f sur ? Calculer l’aire sous la courbe φ sur l’intervalle [0 ; 3]. Exercice 03 : Calcul des surfaces. Soit la fonction f définie sur ]1par…
Cours de tle s sur les fonctions: Intégrales et primitives – Terminale S Intégrale d’une fonction continue et positive Soit f une fonction continue et positive sur [a ; b]. Si F est une primitive quelconque de f sur [a ; b], alors Intégrale d’une fonction continue et négative Soit f une fonction continue et négative sur [a ; b]. L’intégrale de a à b de f est l’opposé de l’aire du domaine D situé sous la courbe φ. On…
Exercices corrigés à imprimer – TleS – Comparaison et lever une indétermination – Terminale S Exercice 01 : Soient f et g deux fonctions définies sur R par : Ecrire la fonction f comme la composée de deux fonctions puis calculer la limite de f en +∞. Ecrire la fonction comme la composée de deux fonctions puis calculer la limite de en +∞. Exercice 02 : La fonction f est définie sur R telle que : Cet encadrement permet-il de…
Tle S – Cours – Comparaison et lever une indétermination – Terminale S Comparaison Théorème: Remarque : peut désigner +∞ ou -∞ ou un réel fini. Lever une indétermination Etape à suivre pour lever une indétermination à travers des exemples d’application : On commence par constater l’indétermination. Les quatre formes indéterminées sont : Dans un cas indéterminé on ne peut pas conclure, il est donc nécessaire de lever l’indétermination. Plusieurs techniques peuvent être utilisées, par exemple : On peut factoriser…
Tle S – Exercices à imprimer sur la définition formelle – Terminale S Exercice 01 : On donne : Trouver a tel que : Combien vaut alors : Exercice 02 : On donne : Combien vaut : Combien vaut : Exercice 03 : On pose : Trouver les limites de en -∞ et +∞ Voir les fichesTélécharger les documents Définition formelle – Terminale S – Exercices corrigés rtf Définition formelle – Terminale S – Exercices corrigés pdf Correction Correction…
Cours de tle S sur la définition formelle – Terminale S Définition formelle Déterminer la limite d’une fonction composée Déterminer la limite d’une fonction composée à travers un exemple d’application: On exprime la fonction sous la forme d’une composée de plusieurs fonctions. On recherche successivement la limite de chacune de ces fonctions en tenant compte à chaque étape du résultat trouvé précédemment. Le changement de variable, on posant : est une autre façon d’écrire cette méthode. On pose On trouve…
Tle S – Exercices corrigés sur les règles opératoires en terminale S Règles opératoires (composition/combinaison)- Exercices Exercice 01 : Déterminer les limites suivantes :….. Exercice 02 : Calculer les limites suivantes :….. Voir les fichesTélécharger les documents Règles opératoires – Terminale S – Exercices à imprimer rtf Règles opératoires – Terminale S – Exercices à imprimer pdf Correction Correction – Règles opératoires – Terminale S – Exercices à imprimer pdf…
TlesS – Cours sur les règles opératoires en terminale S Règles opératoires Les règles formulées dans les tableaux suivants sont valables quelle que soit l’abscisse où l’on prend la limite (en -∞, en un réel fini, en 0, en +∞), les « ? » représentent les formes indéterminées, k et k’ désignent deux réels finis. Somme algébrique de limites:….. Quotient de limites:….. Dans le cas, il est important d’étudier le signe du dénominateur. Les cas de formes d’indétermination Les quatre…
Exercices à imprimer pour la terminale S sur les aspects géométriques Exercice 01 : Soit la fonction f dont la courbe Cf est représentée ci-dessous Lire la limite de f en -∞ en +∞, en 2 à gauche et à droite. A partir de la courbe ci-dessous, on peut lire : Dans cette question, f est la fonction suivante : Etudier la position de Cf par rapport à d1. Exercice 02 : La représentation graphique d’une fonction peut-elle admettre deux…
Tle S – Cours sur les aspects géométriques en terminale S Aspects géométriques : Si : Alors, Cf a une asymptote verticale en a. Si : Alors, Cf a une asymptote horizontale en +∞ (il en est de même en -∞). Remarque : Une courbe peut traverser son asymptote horizontale. Voir les fichesTélécharger les documents Aspects géométriques – Terminale S – Cours rtf Aspects géométriques – Terminale S – Cours pdf…
Exercices à imprimer de tleS – Limites usuelles – Terminale S Exercice 01 : Déterminer les limites suivantes : Exercice 02 : On pose : Déterminer les limites de f en et déduire l’existence d’asymptotes à Cf Exercice 03 : On pose : Déterminer l’image de 0 et de 4 par f. Déterminer l’antécédent de 1 par f….. Voir les fichesTélécharger les documents Limites usuelles – Terminale S – Exercices corrigés rtf Limites usuelles – Terminale S – Exercices…
Cours de tle S sur les limites usuelles – Terminale S Limites d’une fonction : Si tout intervalle ouvert contenant L contient toutes les valeurs f(x) dès que x est assez grand, alors : Si tout intervalle contient toutes les valeurs f(x) dès que x est assez grand, alors : On peut aussi énoncer des définitions similaires pour les limites : En -∞ « dès que x est assez grand » est alors remplacé par « dès que x est…
TleS – Exercices à imprimer sur le nombre dérivé et tangente en un point – Terminale S Exercice 01 : Vrai ou faux. Soit f la fonction définie sur par. est sa courbe représentative. Dire si chacune des affirmations ci-dessous, est vraie ou fausse. f est dérivable sur. ….. . f n’est pas dérivable en 0. ….. . La tangente T à au point d’abscisse 4 a pour équation. ….. . Exercice 02 : Equation de la tangente Déterminer dans…
Tle S – Cours sur le nombre dérivé et tangente en un point – Terminale S Nombre dérivé Le coefficient directeur de la droite (AM) est le taux d’accroissement de la fonction f entre les deux points A et M : La fonction est dérivable en si, et seulement si, admet une limite finie, , lorsque h tend vers 0. Autrement dit le nombre dérivé de f en est la limite, si elle existe, du taux d’accroissement lorsque h tend…
Tle S – Exercices corrigés sur les fonctions dérivées – Terminale S Exercice 01 : Calcul des dérivées Justifier, dans chaque cas, que f est dérivable sur ℝ puis calculer Exercice 02 : Vérification On pose. Répondre aux questions suivantes pour chacune des fonctions ci-dessus. Déterminer la limite pour. Ces fonctions sont-elles toutes continues en ? Trouver les dérivées de ces fonctions. Voir les fichesTélécharger les documents Fonctions dérivées – Terminale S – Exercices à imprimer rtf Fonctions dérivées…
Cours de Tle S sur les fonctions dérivées – Terminale S Fonction dérivée Soit f une fonction définie sur un intervalle. Si f est dérivable pour tout x de, on dit que f est dérivable sur. On appelle la fonction dérivée, ou dérivée de f la fonction notée qui à tout x de I de associe le nombre dérivé de f en x, soit. Dérivées des fonctions usuelles Le tableau suivant regroupe les fonctions usuelles et leurs dérivées. Opérations sur…
Tle S – Exercices à imprimer sur le sens de variation d’une fonction – Terminale S Exercice 01 : Etude d’une fonction Soit f une fonction définie par . Détermine les réels a et b pour que la courbe représentative de f admette une tangente horizontale T au point M de coordonnées (3 ; 7/2). Connaissant les valeurs de a et b, donner l’équation de la tangente U à la courbe représentative de f au point N de coordonnées (0…
Cours de Tle S – Sens de variation d’une fonction – Terminale S Théorème Soit f une fonction définie et dérivable sur un intervalle I et sa fonction dérivée. Si, pour tout x de I,alors est strictement croissante sur Si, pour tout x de I,alors est constante sur Si, pour tout x de I,alors est strictement décroissante sur Propriétés Soit f une fonction définie et dérivable sur un intervalle I et si f admet un extremum local en un point…
Exercices corrigés Tle S – Théorème des valeurs intermédiaires – Terminale S Exercice 01 : Théorème des valeurs intermédiaires Soit f une fonction définie sur par Justifier que l’équation a au moins une solution dans….. Etudier les variations de f puis dresser son tableau de variation. Démontrer que l’équation a une unique solution a dans ….. En déduire le signe de….. Exercice 02 : Théorème des valeurs intermédiaires Voir les fichesTélécharger les documents Théorème des valeurs intermédiaires – Terminale…
Tle S – Cours sur le théorème des valeurs intermédiaires en terminale S Théorème Soit f une fonction continue sur un intervalle fermé. Tout réel c compris entre a au moins un antécédent sur ; autrement dit, l’équation a au moins une solution sur. Cas particulier des fonctions strictement monotones Si la fonction est continue et strictement croissante (respectivement décroissante) sur, pour tout réel c de (respectivement de), l’équation a une unique solution sur. En particulier, si, l’équation a une…
Exercices à imprimer avec la correction – Continuité – Terminale S Exercice 01 : Continue ou pas ? On considère la fonction f définie par La fonction f est –elle continue sur [0 ; 2] ? Exercice 02 : Continue ou pas ? On pose La fonction f est –elle continue sur [0 ; 2] ? Exercice 03 : Continue ou pas ? Soit a un réel et f la fonction définie sur par : Existe-t-il une valeur de a…
Tle S – Cours sur la continuité à imprimer pour la terminale S Fonction continue sur un intervalle Soit f une fonction définie sur un intervalle I de ℝ. Cela signifie que la courbe représentative de f ne présente pas de « trous » sur cet intervalle. On peut la tracer sans lever le crayon. Exemples et contre-exemples Toutes les fonctions usuelles sont continues. Les fonctions affines, carrées, polynômes, valeurs absolues sont continues sur ℝ. La fonction inverse est continue…
En poursuivant votre navigation sur le site vous acceptez l'utilisation de cookies qui nous permettent de présenter et partager des fonctionnalités liées aux publicités, aux médias sociaux et à l'analyse d'audience.