Cours : Terminale

Cours à imprimer et modifier de la catégorie Terminale, fiches au format pdf, doc et rtf.

Cours Terminale

Loi uniforme sur un intervalle – Terminale – Cours

Tle S – Cours sur la loi uniforme sur un intervalle Définition La loi uniforme sur [a; b] modélise le choix au hasard d’un nombre dans l’intervalle [a; b]. Elle est la loi de probabilité ayant pour densité de probabilité la fonction constante f définie sur [a ; b] par : Propriété Soit une variable aléatoire X suivant la loi uniforme sur [a; b]. si c et d sont deux nombres appartenant à [a; b], l’événement « » est noté…

Lire la suite

Plans de l’espace – Caractérisation vectorielle – Terminale – Cours

Cours de Tle S – Caractérisation vectorielle des plans de l’espace et leur représentation paramétrique Caractérisation vectorielle des plans de l’espace Un point A et deux vecteurs non colinéaires de l’espace définissent un plan unique : le plan (ABC) tel que On dit alors que les vecteurs sont des vecteurs directeurs du plan (ABC). Le point M appartient au plan (ABC) si, et seulement si, il existe deux réels a et b tels que Trois vecteurs de l’espace sont coplanaires…

Lire la suite

Droites de l’espace – Caractérisation vectorielle – Terminale – Cours

Caractérisation vectorielle des droites de l’espace et leur représentation paramétrique – Cours – Terminale S Caractérisation vectorielle des droites de l’espace Un point A et un vecteur de l’espace définissent une unique droite : la droite passant par les points A et M telle que On dit alors que est un vecteur directeur de la droite (AM). Deux droites sont parallèles si leurs vecteurs directeurs sont colinéaires et elles sont orthogonales si leurs vecteurs directeurs sont orthogonaux. Représentation paramétrique d’une…

Lire la suite

Repères de l’espace – Terminale – Cours

Cours de TleS – Repères de l’espace – Terminale S Définitions On appelle base de l’ensemble des vecteurs de l’espace tout triplet de vecteurs non coplanaires. Un repère de l’espace est défini par une origine, et trois vecteurs non nuls et non coplanaires. On note Si les vecteurs de base sont orthogonaux deux à deux, alors le repère est dit orthogonal et si la norme de chaque vecteur vaut 1, alors le repère est dit orthonormé. Propriétés Soit un repère…

Lire la suite

Vecteurs de l’espace – Terminale – Cours

Tle S – Cours sur les vecteurs de l’espace Définition A tout couple de points distincts A et B de l’espace, on associe le vecteur , qui a pour sens celui de A vers B, pour direction la droite (AB) et pour longueur AB. La notation de vecteur est définie dans l’espace comme dans le plan. Toutes les définitions et théorèmes appris dans le plan restent applicables et vrais dans l’espace. Vecteurs colinéaires et applications Deux vecteurs non nuls sont…

Lire la suite

Orthogonalité – Terminale – Cours

TleS – Cours de terminale S sur l’orthogonalité Orthogonalité Droites orthogonales: Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Exemples : On considère le parallélépipède rectangle ABCDEFGH : Les droites (AB) et (CG) sont orthogonales car la parallèle (DC) à (AB) est perpendiculaire en C à (CG). Les droites (HA) et (DC) sont orthogonales puisque (DC) est parallèle à (AB), qui est perpendiculaire à (HA) car ABGH est un rectangle. Si d et…

Lire la suite

Résolution – Equations – Inéquations – Terminale – Cours

Résolution d’équations et d’inéquations – Cours pour la terminale S – TleS Résolution d’équations et d’inéquations Equation du type : La fonction ln est continue et strictement croissante sur, à l’aide de son tableau de variations et, d’après le théorème des valeurs intermédiaires, on peut en déduire que, pour tout réel m, l’équation admet une unique solution dans. Il existe un unique réel strictement positif dont le logarithme népérien est : 1 ce réel est noté « e ». On…

Lire la suite

Intégrale d’une fonction continue et positive – Terminale – Cours

Tle S – Cours sur l’intégrale d’une fonction continue et positive – Terminale S Définition Dans un repère orthogonal , on appelle unité d’aire l’aire du rectangle de côtés [OI] et [OJ]. Soient a et b deux nombres réels tels que a < b. soit f une fonction continue et positive sur l’intervalle [a ; b] et φ sa courbe représentative dans un repère orthogonal. On appelle l’intégrale de a à b de f et on note , l’aire, exprimée…

Lire la suite

Logarithme de base a et logarithme décimale – Terminale – Cours

Tle S – Cours – Logarithme de base a et logarithme décimale – Terminale S Logarithme de base a et logarithme décimal Pour tout nombre a strictement positif, on appelle logarithme de base a la fonction notée loga La fonction logarithme décimal, notée log, est une fonction logarithme de base 10. Ainsi, on écrit : La fonction log possède les mêmes propriétés algébriques que la fonction ln. Pour tout entier n, Exemples :…..   Voir les fichesTélécharger les documents Logarithme…

Lire la suite

Propriétés de l’intégrale – Terminale – Cours

Tle S – Cours sur les propriétés de l’intégrale – Terminale S Soient f et g deux fonctions continues sur un intervalle I ; a, b et c éléments de I. Relation de Chasles Linéarité Pour tout réel k, on a : Positivité et ordre (encadrement) Si a < b et si f est positive sur [a ; b], alors le nombre est positif. Si a < b et si, pour tout x de [a ; b],, alors . Si…

Lire la suite

Logarithme d’une fonction – Terminale – Cours

Cours de Tle S – Logarithme d’une fonction – Terminale S Logarithme d’une fonction On considère une fonction u définie et strictement positive sur un intervalle I. On étudie la fonction composée notée définie par. Les fonctions u et ont le même sens de variation sur I. Soit u une fonction dérivable et strictement positive sur un intervalle I, la fonction est dérivable sur I et sa dérivée est : Etudier une fonction logarithme à travers un exemple d’application Enoncé…

Lire la suite

Limites et croissances comparées – Terminale – Cours

Tle S – Cours pour la terminale S sur les limites et croissances comparées Limites et croissances comparées Croissances comparées en l’infini : Exemples d’application: Etudier la limite de f en 1. Etudier la limite de f en -∞ et en ln 2. La droite d’équation est une asymptote à Cf en -∞. La droite d’équation est une asymptote à Cf.   Voir les fichesTélécharger les documents Limites et croissances comparées – Terminale S – Cours rtf Limites et croissances…

Lire la suite

Primitives d’une fonction – Terminale – Cours

Tle S – Cours sur les fonctions – Primitives d une fonction – Terminale S Définition et propriétés Définition Soit f une fonction définie sur un intervalle I. on appelle primitive de f sur I toute fonction F dérivable sur I telle que, pour tout réel x de I, Propriétés Soit F une primitive de f sur un intervalle I. Toutes les primitives de f sur I sont les fonctions G définies sur I par désigne un nombre réel quelconque….

Lire la suite

Intégrales et primitives – Terminale – Cours

Cours de tle s sur les fonctions: Intégrales et primitives – Terminale S Intégrale d’une fonction continue et positive Soit f une fonction continue et positive sur [a ; b]. Si F est une primitive quelconque de f sur [a ; b], alors Intégrale d’une fonction continue et négative Soit f une fonction continue et négative sur [a ; b]. L’intégrale de a à b de f est l’opposé de l’aire du domaine D situé sous la courbe φ. On…

Lire la suite

Théorème d’incidence – Terminale – Cours

Cours de terminale S – Théorème d’incidence – Terminale S Théorème d’incidence Si P est un plan contenant une droite d et si d’ est une droite parallèle à d, alors soit d’ appartient à P soit d’ est parallèle à P. Si d et d’ sont deux droites sécantes chacune parallèles au plan P, alors elles déterminent un plan P’ parallèle à P. Pour démontrer que deux plans P et P’ sont parallèles, il suffit donc de déterminer deux…

Lire la suite

Forme algébrique – Terminale – Cours

Tle S – Cours sur la forme algébrique – Terminale S Forme algébrique d’un nombre complexe Définitions L’ensemble des nombres complexes, noté C, est un ensemble de nombres, qui contient R, dont les éléments s’écrivent Avec a et b des nombres réels et i tel que Soit z un nombre complexe tel que a est la partie réelle de z et b est sa partie imaginaire. On note Lorsque la partie réelle d’un nombre complexe z est nulle, ce dernier…

Lire la suite

Forme géométrique – Terminale – Cours

Tle S – Cours sur la forme géométrique pour la terminale S Forme géométrique d’un nombre Affixe d’un point Définitions A tout nombre complexe on associe le point M de coordonnées (a; b) dans un repère orthonormé direct L’axe des abscisses est appelé l’axe des réels, l’axe des ordonnées est appelé l’axe des imaginaires purs. Le point M est le point image de est le vecteur image de z. z est l’affixe du point M et du vecteur Le point…

Lire la suite

Forme trigonométrique – Terminale – Cours

Cours de Tle S sur la forme trigonométrique – Terminale S Forme trigonométrique d’un nombre complexe Définitions et propriétés Tout nombre complexe admet une écriture trigonométrique de la forme : Soient z et z’ deux nombres complexes tels que : z = z’ si, et seulement si, Soit z un nombre complexe dont l’écriture algébrique est et l’écriture trigonométrique est On a : Interprétation dans un repère orthonormé direct Le plan est muni d’un repère orthonormé direct . Soient A,…

Lire la suite

Fonction logarithme népérien – Terminale – Cours

TleS – Cours – Fonction logarithme népérien – Terminale S Fonction logarithme népérien : Définition: On appelle fonction logarithmique népérien, notée ln, l’unique fonction dérivable sur dont la dérivée est : Et qui s’annule en 1. Conséquences: La dérivée de la fonction ln étant strictement positive sur, on en déduit que ln est strictement croissante sur. D’où : Propriétés: Soient a et b deux nombres appartenant à. Limites aux bornes de définition: Le tableau de variation de la fonction ln…

Lire la suite

Fonctions e u(x) – Terminale – Cours

Tle S – Cours sur les fonctions e u(x) – Terminale S Dérivée de Soit u une fonction définie et dérivable sur un intervalle I. La fonction est dérivable sur I et Les fonctions et u ont le même sens de variation sur I. Etudier une fonction Soit u une fonction polynôme du second degré. On donne la courbe C représentative de la fonction u. Soit f la fonction définie sur ℝ par Etudier les variations de f. Déterminer les…

Lire la suite

Comparaison et lever une indétermination – Terminale – Cours

Tle S – Cours – Comparaison et lever une indétermination – Terminale S Comparaison Théorème: Remarque : peut désigner +∞ ou -∞ ou un réel fini. Lever une indétermination Etape à suivre pour lever une indétermination à travers des exemples d’application : On commence par constater l’indétermination. Les quatre formes indéterminées sont : Dans un cas indéterminé on ne peut pas conclure, il est donc nécessaire de lever l’indétermination. Plusieurs techniques peuvent être utilisées, par exemple : On peut factoriser…

Lire la suite

Sens de variation – Courbe de la fonction exponentielle – Terminale – Cours

TleS – Cours sur le sens de variation et la courbe de la fonction exponentielle – Terminale S Sens de variation Par définition la fonction exp est dérivable sur ℝ et sa dérivée est elle-même ; comme elle est strictement positive, donc la fonction exp est strictement croissante sur ℝ. Limites Les limites de la fonction exp sont D’autres limites : Croissance comparée des fonctions Comportement au voisinage de 0 : la fonction exp est dérivable en 0 ; le…

Lire la suite

Nombre e et Relation fonctionnelle – Terminale – Cours

Tle S – Cours sur le Nombre e et la relation fonctionnelle – Terminale S Nombre e L’image de 1 par la fonction exponentielle est appelée e, elle est notée Une valeur approchée de e à près est Relation fonctionnelle Pour tout réel x, on note Pour tous réels a et b, et pour tout entier naturel n :…..   Voir les fichesTélécharger les documents Nombre e et Relation fonctionnelle – Terminale S – Cours rtf Nombre e et Relation…

Lire la suite

Fonction exponentielle – Terminale – Cours

Cours de tleS sur la fonction exponentielle – Terminale S Définition Il existe une unique fonction f définie et dérivable sur ℝ telle que Cette fonction est appelée fonction exponentielle, elle est notée Domaine de définition et continuité La fonction exponentielle est définie et continue sur l’ensemble des réels. Propriétés Pour tout réel x, Pour tout réel x,   Voir les fichesTélécharger les documents Fonction exponentielle – Terminale S – Cours rtf Fonction exponentielle – Terminale S – Cours pdf…

Lire la suite

Définition formelle – Terminale – Cours

Cours de tle S sur la définition formelle – Terminale S Définition formelle Déterminer la limite d’une fonction composée Déterminer la limite d’une fonction composée à travers un exemple d’application: On exprime la fonction sous la forme d’une composée de plusieurs fonctions. On recherche successivement la limite de chacune de ces fonctions en tenant compte à chaque étape du résultat trouvé précédemment. Le changement de variable, on posant : est une autre façon d’écrire cette méthode. On pose On trouve…

Lire la suite

Règles opératoires – Terminale – Cours

TlesS – Cours sur les règles opératoires en terminale S Règles opératoires Les règles formulées dans les tableaux suivants sont valables quelle que soit l’abscisse où l’on prend la limite (en -∞, en un réel fini, en 0, en +∞), les « ? » représentent les formes indéterminées, k et k’ désignent deux réels finis. Somme algébrique de limites:….. Quotient de limites:….. Dans le cas, il est important d’étudier le signe du dénominateur. Les cas de formes d’indétermination Les quatre…

Lire la suite

Aspects géométriques – Terminale – Cours

Tle S – Cours sur les aspects géométriques en terminale S Aspects géométriques : Si : Alors, Cf a une asymptote verticale en a. Si : Alors, Cf a une asymptote horizontale en +∞ (il en est de même en -∞). Remarque : Une courbe peut traverser son asymptote horizontale.   Voir les fichesTélécharger les documents Aspects géométriques – Terminale S – Cours rtf Aspects géométriques – Terminale S – Cours pdf…

Lire la suite

Limites usuelles – Terminale – Cours

Cours de tle S sur les limites usuelles – Terminale S Limites d’une fonction : Si tout intervalle ouvert contenant L contient toutes les valeurs f(x) dès que x est assez grand, alors : Si tout intervalle contient toutes les valeurs f(x) dès que x est assez grand, alors : On peut aussi énoncer des définitions similaires pour les limites : En -∞ « dès que x est assez grand » est alors remplacé par « dès que x est…

Lire la suite

Cercle trigonométrique – Terminale – Cours

Tle S – Cours sur le cercle trigonométrique – Terminale S Définitions Dans le plan muni d’un repère orthonormé , on appelle cercle trigonométrique le cercle de centre O et de rayon 1 sur lequel on a défini un sens positif : le sens inverse des aiguilles d’une montre. Ce sens est appelé sens trigonométrique. Repérage d’un point sur le cercle trigonométrique (C) est le cercle trigonométrique de centre O et de rayon 1 et , un repère orthonormé du…

Lire la suite

Propriétés – Terminale – Cours

Tle S – Cours de terminales S sur les propriétés Propriétés Pour tout réel x : Pour tout réel x et tout entier relatif k : Pour tout réel x : Angles remarquables Angle en degré 0° 30° 45° 60° 90° 180° Mesure x en radians 0 cos x 1 0 -1 sin x 0 1 0 Pour obtenir tous les angles du cercle trigonométrique il suffit d’appliquer les propriétés sus citées, et on obtient :   Voir les fichesTélécharger…

Lire la suite

Terminale - Cours

Page 4 / 5 :12345

Tables des matières Terminale