Les suites : Terminale S – TS

Cours, exercices et évaluation corrigés à imprimer et modifier de la catégorie Les suites - Mathématiques : Terminale S – TS, fiches au format pdf, doc et rtf.

Cours et exercice : Les suites : Terminale S – TS

Majorées, minorées – Terminale S – Exercices sur les suites

Tle S – Exercices corrigés à imprimer sur les suites majorées et minorées – Terminale S Exercice 01 : Suites bornées Soit u et v deux suites telles que u est croissante et v est décroissante et, pour tout Montrer que les suites et sont bornées. En déduire qu’elles convergent. On suppose que En déduire que et ont la même limite. Exercice 02 : Démonstrations Soit u une suite définie pour tout entier naturel par Démontrer que est bornée. Exercice…

Lire la suite

Suites majorées et suites minorées – Terminale S – Cours

Tle S – Cours sur les suites majorées et suites minorées en terminale S Une suite u est majorée si, et seulement si, il existe un réel M tel que pour tout entier naturel n, Une suite u est minorée si, et seulement si, il existe un réel m tel que pour tout entier naturel n, Une suite u est bornée si, et seulement si, elle est à la fois majorée et minorée. Si une suite est croissante et converge…

Lire la suite

Suites géométriques et arithmétiques – Terminale S – Exercices corrigés

Tle S – Exercices à imprimer sur les suites arithmétiques et géométriques – Terminale S Exercice 01 : Suite géométrique On considère les deux suites u et v définies, pour tout entier n, par : Calculer Quelles conjectures peut-on faire sur les suites u, v et w = v – u? Montrer que la suite w est une suite géométrique de raison ¼. Exprimer en fonction de n et préciser la limite de la suite w. Soit la suite x…

Lire la suite

Suites arithmétiques et géométriques – Terminale S – Cours

Cours de Tle S sur les suites arithmétiques et géométriques – Terminale S Suites arithmétiques Définition La suite u est arithmétique si, et seulement si, il existe un réel r tel que pour tout n, c’est-à-dire Soit une suite arithmétique de raison r. Pour tous entiers naturels n: La suite u est strictement décroissante si, et seulement si, pour tout n, Somme des termes consécutifs d’une suite arithmétique : Variations et limites Si r > 0, alors la suite arithmétique…

Lire la suite

Comparaison – Limite – Terminale S – Exercices corrigés Tle S

Exercices à imprimer – Limite et comparaison – Terminale S Exercice 01 : Convergence Etudier la convergence de chaque suite dont le terme général est donné ci-dessous. Exercice 02 : Démonstrations Soit, une suite définie sur dont aucun terme n’est nul et la suite, définie sur par : Pour chacune des propositions ci-dessous, indiquer si elle est vraie ou fausse et proposer une démonstration. Si est convergente, alors .. est convergente…..   Voir les fichesTélécharger les documents rtf pdf Correction…

Lire la suite

Limite et comparaison – Terminale S – Cours

Cours de Tle S – Limite et comparaison – Terminale S Théorèmes de comparaison Minoration Si et sont deux suites telles que à partir d’un certain rang et Si et sont deux suites telles que à partir d’un certain rang et Encadrement Soient , et trois suites. Si à partir d’un certain rang convergent vers un réel L, alors converge aussi vers L. Limites de…..   Voir les fichesTélécharger les documents rtf pdf…

Lire la suite

Opérations sur les limites – Terminale S – Exercices corrigés

Exercices à imprimer Tle S – Opérations sur les limites en terminale S Exercice 01 : Opérations sur les limites Calculer la limite de la suite dans chacun des cas suivants, indiquer la propriété utilisée. Exercice 02 : Avec deux suites Soient et deux suites définies pour tout entier naturel n, par : Déterminer les limites des suites suivantes :   Voir les fichesTélécharger les documents rtf pdf Correction Correction – pdf…

Lire la suite

Opérations sur les limites – Terminale S – Cours

Cours de Tle S sur les opérations sur les limites – Terminale S Soient et deux suites. Si : . L et L’ sont des réels. Les tableaux ci-dessous résument les opérations sur les limites Règles pour la somme Règles pour le produit Règles pour le quotient (*) : Le choix entre et est déterminé par le signe de et de F.I. : Signifie qu’il y a une forme indéterminée.   Voir les fichesTélécharger les documents rtf pdf…

Lire la suite

Limites de suites – Tle S – Exercices à imprimer

Terminale S – Exercices corrigés sur les limites de suites Exercice 01 : Limite d’une suite Déterminer les limites des suites suivantes Exercice 02 : Convergence Soit u une suite définie par , et pour tout entier naturel n, Montrer que si converge, alors sa limite est 1. Montrer que, pour tout entier naturel n, Que peut-on conclure. Exercice 03: Les limites On considère la suite définie pour tout définie par :. Soit k un entier naturel. Démontrer qu’il existe…

Lire la suite

Limites de suites – Terminale S – Cours

Cours de Tle S sur les limites de suites – Terminale S Suites convergentes vers l Soit une suite numérique et l un réel. On dit que la suite converge vers l si tout intervalle ouvert contenant l contient toutes les valeurs de la suite à partir d’un certain rang. Exemple : les suites convergent vers 0. Si converge vers l, l est appelé la limite de la suite Elle est unique. On écrit : Exemple : Suites divergentes Une…

Lire la suite

Variations des suites – Terminale S – Exercices corrigés

Exercices à imprimer pour la terminale S – Variations des suites en Tle S Exercice 01 : Sens de variation Dans chacun des cas ci-dessous, étudier le sens de variation de la suite définie pour tout définie par : Exercice 02 : Avec une fonction On pose . Soit la suite définie par : et la suite définie par : Etudier les variations de Montrer que, pour tout n, Etudier les variations de…..   Voir les fichesTélécharger les documents rtf…

Lire la suite

Variations des suites – Terminale S – Cours

Cours de Tle S sur les variations des suites – Terminale S Définitions La suite u est croissante si, et seulement si, pour tout n, La suite u est strictement croissante si, et seulement si, pour tout n, La suite u est décroissante si, et seulement si, pour tout n, La suite u est strictement décroissante si, et seulement si, pour tout n, La suite u est constante ou stationnaire si, et seulement si, pour tout n, Une suite est…

Lire la suite

Raisonnement par récurrence – Terminale S – Exercices corrigés

Exercices à imprimer avec la correction sur le raisonnement par récurrence – Terminale S – Tle Exercice 01 : Démonstration par récurrence Soit f la fonction définie sur R par et la suite définie par et pour tout entier naturel n, Démontrer que la fonction f est croissante sur R. Démontrer par récurrence que la suite est décroissante. En déduire que pour tout entier naturel n, Exercice 02 : Principe de récurrence Soit v la suite définie, pour tout entier…

Lire la suite

Raisonnement par récurrence – Terminale S – Cours

Cours de Terminale S sur le raisonnement par récurrence – Tle Modes de génération d’une suite numérique Par une formule explicite La suite u est définie de manière explicite lorsque chaque terme s’exprime directement en fonction de n. Exemple : Pour tout n ≥ 0, les suites u et v sont définies par les formules explicites suivantes : Ces formules permettent de calculer directement un terme de rang quelconque. Par exemple, pour les deux suites, le terme de rang 4…

Lire la suite