Les suites : Terminale S – TS

Cours, exercices et évaluation corrigés à imprimer et modifier de la catégorie Les suites - Mathématiques : Terminale S – TS, fiches au format pdf, doc et rtf.

Cours et exercice : Les suites : Terminale S – TS

Majorées, minorées – Terminale S – Exercices sur les suites

Tle S – Exercices corrigés à imprimer sur les suites majorées et minorées – Terminale S Exercice 01 : Suites bornées Soit u et v deux suites telles que u est croissante et v est décroissante et, pour tout Montrer que les suites et sont bornées. En déduire qu’elles convergent. On suppose que En déduire que et ont la même limite. Exercice 02 : Démonstrations Soit u une suite définie pour tout entier naturel par Démontrer que est bornée. Exercice…

Lire la suite

Suites majorées et suites minorées – Terminale S – Cours

Tle S – Cours sur les suites majorées et suites minorées en terminale S Une suite u est majorée si, et seulement si, il existe un réel M tel que pour tout entier naturel n, Une suite u est minorée si, et seulement si, il existe un réel m tel que pour tout entier naturel n, Une suite u est bornée si, et seulement si, elle est à la fois majorée et minorée. Si une suite est croissante et converge…

Lire la suite

Suites géométriques et arithmétiques – Terminale S – Exercices corrigés

Tle S – Exercices à imprimer sur les suites arithmétiques et géométriques – Terminale S Exercice 01 : Suite géométrique On considère les deux suites u et v définies, pour tout entier n, par : Calculer Quelles conjectures peut-on faire sur les suites u, v et w = v – u? Montrer que la suite w est une suite géométrique de raison ¼. Exprimer en fonction de n et préciser la limite de la suite w. Soit la suite x…

Lire la suite

Suites arithmétiques et géométriques – Terminale S – Cours

Cours de Tle S sur les suites arithmétiques et géométriques – Terminale S Suites arithmétiques Définition La suite u est arithmétique si, et seulement si, il existe un réel r tel que pour tout n, c’est-à-dire Soit une suite arithmétique de raison r. Pour tous entiers naturels n: La suite u est strictement décroissante si, et seulement si, pour tout n, Somme des termes consécutifs d’une suite arithmétique : Variations et limites Si r > 0, alors la suite arithmétique…

Lire la suite

Variations des suites – Terminale S – Cours

Cours de Tle S sur les variations des suites – Terminale S Définitions La suite u est croissante si, et seulement si, pour tout n, La suite u est strictement croissante si, et seulement si, pour tout n, La suite u est décroissante si, et seulement si, pour tout n, La suite u est strictement décroissante si, et seulement si, pour tout n, La suite u est constante ou stationnaire si, et seulement si, pour tout n, Une suite est…

Lire la suite

Raisonnement par récurrence – Terminale S – Exercices corrigés

Exercices à imprimer avec la correction sur le raisonnement par récurrence – Terminale S – Tle Exercice 01 : Démonstration par récurrence Soit f la fonction définie sur R par et la suite définie par et pour tout entier naturel n, Démontrer que la fonction f est croissante sur R. Démontrer par récurrence que la suite est décroissante. En déduire que pour tout entier naturel n, Exercice 02 : Principe de récurrence Soit v la suite définie, pour tout entier…

Lire la suite

Raisonnement par récurrence – Terminale S – Cours

Cours de Terminale S sur le raisonnement par récurrence – Tle Modes de génération d’une suite numérique Par une formule explicite La suite u est définie de manière explicite lorsque chaque terme s’exprime directement en fonction de n. Exemple : Pour tout n ≥ 0, les suites u et v sont définies par les formules explicites suivantes : Ces formules permettent de calculer directement un terme de rang quelconque. Par exemple, pour les deux suites, le terme de rang 4…

Lire la suite

Les suites : Terminale S – TS - Cours et exercice

Page 1 / 2 :12

Tables des matières Les suites - Mathématiques : Terminale S – TS