Pass-education a regroupé dans ce dossier toutes les ressources pour les élèves de 4ème. Ces cours, leçons et exercices corrigés sont disponibles en téléchargement, pour les familles en IEF, comme pour les professeurs. Ces documents ont été conçus par des enseignants, et sont conformes aux programmes du collège. Plus de 700 fiches à imprimer, pour aider les classes de quatrième à se préparer activement au brevet.
Leçons et exercices pour la 4ème
Avant-dernière année du cycle 4, la classe de quatrième structure les acquis en préparation de la 3ème et du DNB (diplôme du brevet). Pour accompagner les élèves dans leurs apprentissages, ce site pédagogique propose des ressources en téléchargement dans les matières principales :
mathématiques ;
français ;
histoire-géographie ;
anglais ;
sciences et vie de la terre (SVT) ;
physique-chimie ;
etc.
Chaque fiche est disponible au format PDF, et tous les exercices sont accompagnés d’une fiche de corrigé détaillée.
Synthèses de cours pour les élèves de 4ème
Des révisions régulières permettent d’ancrer les notions, et de combler d’éventuelles lacunes chez les collégiens. En complément du travail réalisé au collège, les élèves s’entraîneront avec Pass-education. Voici quelques exemples des ressources en maths 4ème :
cours sur le théorème de Pythagore ;
exercices sur les puissances ;
techniques de développement et de factorisation ;
concepts et application de trigonométrie ;
etc.
En SVT, les élèves retrouvent les thématiques étudiées en classe de 4ème telles que :
le volcanisme ;
la tectonique des plaques ;
la reproduction humaine ;
la nutrition à l’échelle cellulaire ;
l’exploitation des ressources naturelles ;
etc.
En physique-chimie, ce sont les notions clés des sciences appliquées qui sont abordées en cours de 4ème. Les élèves structurent ainsi leurs connaissances dans les chapitres suivants :
l’électricité ;
les transformations chimiques et physiques ;
les signaux sonores ;
les combustions ;
la composition de l’air ;
la masse volumique ;
la structure de l’univers ;
etc.
Fiches de révision pour le niveau 4ème
Des fiches de révision en géométrie 4ème, ou en calcul mental sont également disponibles pour le soutien scolaire. Notre plateforme éducative regroupe aussi des supports de langues vivantes (allemand, anglais), et des documents pour étudier l’histoire de France. Une base de plusieurs centaines de ressources à télécharger en ligne, par l’élève ou le professeur. Ils y trouveront des activités sous forme de quiz, de QCM ou d’évaluation au format question-réponse. D’autres supports accompagnent les collégiens, dans des matières telles que l’éducation physique et sportive, la technologie, l’enseignement moral civique (EMC). Chaque exercice en téléchargement porte sur un point précis du cours de 4ème, et comporte une correction.
Séquence complète en Histoire pour la 4ème : Conditions féminines au XIXe siècle Société, culture et politique dans la France du XIXe siècle Conditions féminines au XIXe siècle – 4ème – Cours Introduction Malgré le principe d’égalité proclamé par la Révolution française, les femmes n’ont pas une place équivalente aux hommes dans la société. Certaines femmes ont tenté d’obtenir les mêmes droits politiques que les hommes, comme Olympe de Gouges qui écrit sa Déclaration des droits de la femme et…
Cours en Histoire pour la 4ème : Conditions féminines au XIXe siècle Société, culture et politique dans la France du XIXe siècle Problématique : Quelle est la place des femmes dans la société du XIXe siècle ? Sommaire : Introduction I. Les femmes exclues du corps civique a. Le Code civil de 1804 b. Des « non citoyennes » au rôle stéréotypé II. Le travail des femmes a. Les métiers « de femme » au XIXe siècle b. Des femmes…
Exercices avec les corrigés en Histoire pour la 4ème : Conditions féminines au XIXe siècle Société, culture et politique dans la France du XIXe siècle Les femmes exclues du corps civique Le Code civil de 1804 Exercice 1 : Comprendre un document Consigne : Lisez attentivement ces différents articles du Code civil de 1804 puis répondez aux questions. N’oubliez pas de justifier systématiquement en citant les numéros d’articles. Art. 213 : Le mari doit protection à sa femme, la femme…
Evaluation avec les corrections en Histoire pour la 4ème : Conditions féminines au XIXe siècle Société, culture et politique dans la France du XIXe siècle Questions de cours Consigne : Répondez à la question par une réponse développée et argumentée. Les femmes exclues du corps civique Quel texte de loi rédigé sous le Premier Empire entérine les inégalités entre époux au sein du mariage ? Rappelez quels sont les droits dont bénéficie le mari au sein du mariage mais qui…
Séquence complète en Histoire pour la 4ème : La Troisième République Société, culture et politique dans la France du XIXe siècle Cours en Histoire pour la 4ème : La Troisième République Introduction La République ne va pas de soi dans la France du XIXe siècle. Le pays a connu la Restauration, la monarchie de Juillet et le Second Empire. Les députés de la Troisième République dirigent un pays qui est marqué par de nombreuses divergences politiques. Il existe des forces…
Cours en Histoire pour la 4ème : La Troisième République Société, culture et politique dans la France du XIXe siècle Problématique : Comment la Troisième République s’enracine-t-elle progressivement dans le paysage politique français ? Sommaire : Introduction La fondation de la Troisième République La guerre franco-prussienne La Commune La République s’enracine Les lois sur l’école La laïcité Un paysage républicain La République menacée L’Affaire Dreyfus Les crises politiques Conclusion Introduction La République ne va pas de soi dans la France…
Exercices avec les corrigés en Histoire pour la 4ème : La Troisième République Société, culture et politique dans la France du XIXe siècle I. La fondation de la Troisième République A. La guerre franco-prussienne Exercice 1 : Confronter des documents Source : Livre scolaire « Le 19 juillet 1870, la France déclare la guerre à la Prusse, que vient soutenir l’ensemble des états allemands. Les soldats sont relativement confiants dans la force de l’armée française qui a déjà battu les…
Evaluation avec les corrections en Histoire pour la 4ème : La Troisième République Société, culture et politique dans la France du XIXe siècle 1. Maîtriser le vocabulaire disciplinaire Consigne : Définissez les termes suivants. 1. Antisémitisme 2. Anarchisme 3. Boulangisme 4. Laïcité 5. Populisme 6. Dreyfusard 2. Questions de cours Consigne : Répondez à la question par une réponse développée et argumentée. Commune de Paris 1. Quel événement déclenche la Commune de Paris ? 2. Quel programme politique et social…
Cours sur “Grandeurs Produit” pour la 4ème Notions sur “Identifier les grandeurs physiques” Définition : Une grandeur-produit est une grandeur obtenue en faisant le produit de deux grandeurs. L’aire est une grandeur-produit, c’est le produit de deux longueurs. Exemple 1 : L’énergie électrique consommée par un appareil est donnée par la formule : E=P ×t Avec : P la puissance de l’appareil, qui s’exprime en Watts (W). t la durée de fonctionnement, qui s’exprime en heures décimales. E l’énergie consommée…
Exercices, révisions sur “Grandeurs Produit” à imprimer avec correction pour la 4ème Notions sur “Identifier les grandeurs physiques” Consignes pour ces révisions, exercices : En électricité, l’énergie E (en Wh ou kWh) produite par un appareil de puissance P (en W ou kW) pendant une durée d (en heures décimales) est calculée par l’expression : Quelle est l’énergie utilisée en kWh en un jour ? La puissance électrique d’un appareil se mesure en watts ou en kilowatts. L’énergie consommée se…
Séquence complète sur “Grandeurs Produit” pour la 4ème Notions sur “Identifier les grandeurs physiques” Cours sur “Grandeurs Produit” pour la 4ème Définition : Une grandeur-produit est une grandeur obtenue en faisant le produit de deux grandeurs. L’aire est une grandeur-produit, c’est le produit de deux longueurs. Exemple 1 : L’énergie électrique consommée par un appareil est donnée par la formule : E=P ×t Avec : P la puissance de l’appareil, qui s’exprime en Watts (W). t la durée de fonctionnement,…
Evaluation, bilan, contrôle avec la correction sur “Grandeurs Produit” pour la 4ème Notions sur “Identifier les grandeurs physiques” Compétences évaluées Utiliser une formule littérale représentant le produit de deux grandeurs. Utiliser une grandeur-produit. Consignes pour ces évaluation, bilan, contrôle : Exercice N°1 Qu’appelle-t-on grandeur produit ? Donner un exemple de grandeur produit. Exercice N°2 En électricité, l’énergie E (en Wh ou kWh) produite par un appareil de puissance P (en W ou kW) pendant une durée d (en h décimales)…
Séquence complète sur “Modéliser une situation” pour la 4ème Notions sur “Équations et inéquations” Cours sur “Modéliser une situation” pour la 4ème Pour mettre un problème en équation, il faut suivre les étapes suivantes : Choisir l’inconnue, la nommer avec une lettre. Traduire le problème par une égalité entre deux expressions faisant intervenir l’inconnue. Résoudre l’équation. Interpréter le résultat. Exemple : Un père veut donner 1600 € à ses trois enfants. Il veut que l’aîné ait 200 € de plus…
Séquence complète sur “Résoudre une équation du 1er degré” pour la 4ème Notions sur “Équations et inéquations” Cours sur “Résoudre une équation du 1er degré” pour la 4ème Règle n°1 : Lorsqu’on additionne ou on soustrait un même nombre à chaque membre d’une égalité, on obtient une nouvelle égalité. Exemple : x-3=10 x-3+3=10+3 x=13 Règle n°2 : Lorsqu’on multiplie ou on divise par un même nombre non nul chaque membre d’une égalité, on obtient une nouvelle égalité. Exemple : x/3=10…
Séquence complète sur “Notion d’équation” pour la 4ème Notions sur “Équations et inéquations” Cours sur “Notion d’équation” pour la 4ème Définition Une équation est une égalité comportant au moins un nombre inconnu désigné par une lettre souvent notée x, que l’on appelle l’inconnue de l’équation. Résoudre une équation, c’est trouver la valeur de l’inconnue pour laquelle l’égalité est vraie (il se peut qu’il y ait plusieurs valeurs possibles). Ces valeurs sont les solutions de l’équation. Exemples 4x-3=9-2x est une équation….
Séquence complète sur “Tester une égalité ou une inégalité” pour la 4ème Notions sur “Équations et inéquations” Cours sur “Tester une égalité ou une inégalité” pour la 4ème Tester une égalité Pour tester si une égalité est vraie pour des valeurs affectées aux lettres : On calcule le membre de gauche en remplaçant chaque lettre par le nombre donné. On calcule le membre de droite en remplaçant chaque lettre par le nombre donné. On observe si les deux membres sont…
Séquence complète sur “Exprimer en fonction de” pour la 4ème Notions sur “Équations et inéquations” Cours sur “Exprimer en fonction de” pour la 4ème Définition : Ecrire un résultat en fonction de x c’est écrire une expression littérale contenant la lettre x. Exemple 1 : Sur un site internet, les tee-shirts sont vendus au prix de 12 € le tee-shirt et les frais de livraison s’élèvent à 8,5 €. Calculer, en fonction de x, le prix à payer si on…
Séquence complète sur “Expressions égales” pour la 4ème Notions sur “Calcul littéral” Cours sur “Expressions égales” pour la 4ème Définition Deux expressions littérales sont égales, si, pour n’importe quelles valeurs attribuées aux lettres, les deux expressions donnent le même résultat. Pour prouver que deux expressions sont égales : Pour prouver l’égalité de deux expressions, on peut transformer l’écriture de l’une afin d’obtenir celle de l’autre. Exemple : Prouver que : A=7x^2+5x et B=7x(x+1)-2x sont égales. On peut partir de l’expression…
Séquence complète sur “Factorisation” pour la 4ème Notions sur “Calcul littéral” Cours sur “Factorisation” pour la 4ème Définition Factoriser une expression littérale, c’est transformer une somme ou une différence en produit. Pour cela on utilise les formules de distributivité dans le sens contraire. On dit que k est un facteur commun aux deux termes de la somme ka et kb Factoriser par 5 ou mettre 5 en facteur signifie que l’on obtient une expression de la forme : 5 ×(……..
Séquence complète sur “Développement Réduction” pour la 4ème Notions sur “Calcul littéral” Cours sur “Développement Réduction” pour la 4ème Distributivité de la multiplication par rapport à l’addition Propriété La multiplication est distributive par rapport à l’addition et à la soustraction. Cela signifie que, quels que soient les nombres a, b et k on a : Développer une expression littérale Développer une expression littérale c’est transformer un produit en somme ou en différence Exemple 1 : Développer 3(x+5) Pour développer cette…
Séquence complète sur “Écriture scientifique d’un nombre” pour la 4ème Notions sur “Les puissances” Cours sur “Écriture scientifique d’un nombre” pour la 4ème Les calculatrices, lorsque le résultat d’un calcul dépasse leur capacité d’affichage donnent une valeur approchée du résultat en notation scientifique. Définition : Un nombre positif est écrit en notation scientifique quand il est écrit sous la forme : a×〖10〗^n où : a est un nombre décimal tel que 1≤a<10 c’est-à-dire que a s’écrit avec un seul chiffre…
Séquence complète sur “Écrire les grands et les petits nombres” pour la 4ème Notions sur “Les puissances” Cours sur “Écrire avec les grands nombres et les petits nombres” pour la 4ème Dans ce chapitre on va travailler avec les puissances de 10. Puissances positives de 10 : Puissances négatives de 10 : 〖10〗^(-n) désigne l’inverse de 〖10〗^n. Puissances de 10 et préfixes. Plus grand que l’unité Plus petit que l’unité Préfixe giga méga kilo hecto déca unité déci centi milli…
Séquence complète sur “Opérations sur les puissances” pour la 4ème Notions sur “Les puissances” Cours sur “Opérations sur les puissances” pour la 4ème Produit de deux puissances d’un même nombre : Exemple : Propriété : Quel que soit le nombre relatif non nul et quels que soient les nombres entiers et on a : Quotient de deux puissances d’un même nombre : Exemple : Propriété : Quel que soit le nombre relatif non nul et quels que soient les…
Séquence complète sur “Puissances d’exposant négatif” pour la 4ème Notions sur “Les puissances” Cours sur “Puissances d’exposant négatif” pour la 4ème Définition Si a est un nombre relatif non nul et n un entier naturel, on a : a^(-n) désigne l’inverse de a^n. a^(-n)=1/a^n Exemples : 2^(-3)=1/2^3 =1/(2×2×2)= 1/8 (-3)^(-4)=1/〖(-3)〗^4 =1/((-3)×(-3)×(-3)×(-3))= 1/81 〖10〗^(-4)=1/〖10〗^4 = 1/(10×10×10×10)=1/(10 000)=0,0001 Cas particulier : Si n=1 : a^(-1 ) est l’inverse de a Exemples : 2^(-1)=1/2 〖(-4)〗^(-1)=-1/4 Exercices, révisions sur “Puissances d’exposant négatif” à…
Séquence complète sur “Puissances d’exposant positif” pour la 4ème Notions sur “Les puissances” Cours sur “Puissances d’exposant positif” pour la 4ème Définition : a désigne un nombre relatif. n désigne un nombre entier supérieur ou égal à 1. Le produit de n facteurs égaux à a : est une puissance de a. On note : a ×a×a×….. ×a=a^n On lit : « a exposant n ». Exemples : Cas particulier : Si a≠0 alors a^0=1 et si a quelconque a^1=a…
Séquence complète sur “Carré et cube d’un nombre relatif ” pour la 4ème Notions sur “Les puissances” Cours sur “Carré et cube d’un nombre relatif ” pour la 4ème Soit a un nombre relatif. CARRE D’UN RELATIF : Définition : Le produit a×a se note a² et se lit a au carré. Dans a×a il y a deux facteurs. Exemples : 6^2=6 ×6=36 (-7)^2=(-7)×(-7)=49 Vocabulaire : Dans l’expression a² , l’entier 2 est appelé exposant. CUBE D’UN RELATIF : Définition…
Séquence complète sur “Division de fractions” pour la 4ème Notions sur “Les fractions (2)” Cours sur “Division de fractions” pour la 4ème Propriété : Diviser par un nombre relatif différent de 0 revient à multiplier par son inverse. Soient 4 nombres a,b,c et d tels que : b ≠0,c≠0 et d≠0 a/b÷c/d=a/b×d/c=(a×d)/(b×c) Exemples : (-2)/7 ÷ 4/5= (-2)/7 × 5/4= (-2×5)/(7×4)= (-2×5)/(7×2×2)= (-5)/14 -3 ÷ 1/4= -3 × 4/1= (-12)/1= -12 (2/5)/((-10)/3)=2/5×(-3)/10=(2×-3)/(5×10)= (2×-3)/(5×2×5)=(-3)/25 Remarque : La barre de fraction principale…
Séquence complète sur “Inverse d’une fraction” pour la 4ème Notions sur “Les fractions (2)” Cours sur “Inverse d’une fraction” pour la 4ème Définition Soit x un nombre relatif non nul. L’inverse de x est le nombre qui, multiplié par x donne 1. Exemples L’inverse de 8 est 0,125 car 8×0,125=1. L’inverse de -2 est -0,5 car -2×-0,5=1. Propriété : Soient a et b des nombres relatifs non nuls. L’inverse du nombre a est le nombre 1/a “L’inverse du nombre” a/b…
Séquence complète sur “Multiplications de fractions” pour la 4ème Notions sur “Les fractions (2)” Cours sur “Multiplications de fractions” pour la 4ème Propriété : Pour multiplier deux nombres en écritures fractionnaires, on multiplie les numérateurs entre eux et les dénominateurs entre eux, en appliquant la règle des signes apprise dans la multiplication des nombres relatifs. Soient a, b, c et d quatre nombres tels que : b ≠0 et d ≠0 a/b × c/d= (a×c)/(b×d) Exemple A= (-3)/5×7/12= (-3×7)/(5×12)=(-21)/60=-(3×7)/(3×20)=-7/20 Dans…
Séquence complète sur “Additions et soustractions de fractions” pour la 4ème Notions sur “Les fractions (1)” Cours sur “Additions et soustractions de fractions” pour la 4ème Pour additionner ou pour soustraire deux fractions qui ont le même dénominateur : on additionne ou on soustrait les numérateurs. on garde le dénominateur commun. a b et c avec c ≠0 désignent trois nombres relatifs : a/c+ b/c= (a+b)/c a/c- b/c = (a-b)/c Exemples A= (-2)/(7 )+ 3/7 = (-2+3)/7 = 1/7 B=…