Les hauteurs d’un triangle – 6ème – Cours sur les figures usuelles

Cours sur « Les hauteurs d’un triangle » pour la 6ème 

Notions sur « les figures usuelles »

La notion de hauteur est importante car cela nous permettra, dans le chapitre 16, de calculer l’aire d’un triangle.
Définition :
Dans un triangle, la hauteur issue d’un sommet est la droite qui passe par ce sommet et qui coupe perpendiculairement le côté opposé à ce sommet (ou son prolongement).

On dit que la droite (AH) est la hauteur issue de A dans le triangle ABC.

On dit aussi que la droite (AH) est la hauteur relative au côté [BC].

Le point H, point d’intersection de la droite (AH) et du côté [BC], s’appelle le pied de la hauteur.

Attention :
Quand on parle de la hauteur issue de A, cela peut désigner :
• La droite (AH).
• Le segment [AH].
• La longueur AH.

Remarque 1 :
La hauteur issue d’un sommet d’un triangle peut être à l’intérieur du triangle ainsi qu’on l’a construite dans l’exemple précédent mais elle peut aussi être extérieure au triangle.

Pour construire la perpendiculaire au côté [BC]passant par A, on prolonge le côté [BC].

Remarque 2 :
Dans un triangle ABC, il y a 3 hauteurs : celle qui est issue de A, celle qui est issue de B et celle qui est issue de C. Ces trois hauteurs passent toutes par un même point. On dit qu’elles sont concourantes.

 



Cours – Les hauteurs d’un triangle – 6ème – Les figures usuelles pdf

Cours – Les hauteurs d’un triangle – 6ème – Les figures usuelles rtf

Tables des matières Triangles - Géométrie - Mathématiques : 6ème - Cycle 3