Exercice 01:

Le plan est muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$.

On considère les points A(4; -3), B(1; 2), E(0; $\frac{11}{3}$) et R(-2; 7)

1. Démontrer que A, B, E et R sont alignés.

A(4; -3), B(1; 2), E(0;
$$\frac{11}{3}$$
) donc:

$$\overrightarrow{AB}(-3;5)$$
 et $\overrightarrow{AE}\left(-4;\frac{20}{3}\right)$ on observe que:

 $\overrightarrow{AE} = \frac{4}{3}\overrightarrow{AB}$ donc \overrightarrow{AB} et \overrightarrow{AE} sont colinéaires , d'où A, B et E sont alignés.

$$A(4; -3), R(-2; 7)$$
 donc : $\overrightarrow{AR}(-6.10)$ on observe que :

 $\overrightarrow{AR} = 2\overrightarrow{AB}$ donc \overrightarrow{AB} et \overrightarrow{AR} sont colinéaires, d'où A, B, E et R sont alignés.

2. On pose $\vec{u} = \overrightarrow{AB}$. Exprimer les vecteurs \overrightarrow{AR} et \overrightarrow{ER} en fonction du vecteur \vec{u} .

On pose : $\vec{u} = \overrightarrow{AB}$, on exprime \overrightarrow{AR} et \overrightarrow{ER} en fonction du vecteur \vec{u}

$$\overrightarrow{AR} = 2.\overrightarrow{u}$$

$$\overrightarrow{\mathrm{ER}} = \overrightarrow{\mathrm{EA}} + \overrightarrow{\mathrm{AR}} = -\overrightarrow{\mathrm{AE}} + \overrightarrow{\mathrm{AR}} = -\frac{4}{3}\vec{u} + 2\vec{u} = \left(-\frac{4}{3} + 2\right)\vec{u} = \frac{2}{3}\vec{u}$$

$$\overrightarrow{ER} = \frac{2}{3}\overrightarrow{u}$$

Exercice 02:

Le plan est muni d'un repère.

1. Dans chacun des cas suivants, les vecteurs u et v sont-ils colinéaires ?

a)
$$\vec{u}(1; 2)$$
 et $\vec{v}(-2; 1)$

 $1 \times 1 - 2 \times (-2) = 5 \neq 0$ Les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires

b)
$$\vec{u}(2;-1)$$
 et $\vec{v}(1;-2)$

 $2 \times (-2) - (-1) \times 1 = -3 \neq 0$ Les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires

c) $\vec{u}(2; 4)$ et $\vec{v}(1; -2)$

 $2 \times (-2) - 4 \times 1 = -8 \neq 0$ Les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires

d)
$$\vec{u}(\sqrt{2}; 1)$$
 et $\vec{v}(\sqrt{3}; \sqrt{6})$

 $\sqrt{2} \times \sqrt{6} - 1 \times \sqrt{3} = 2\sqrt{3} - \sqrt{3} = \sqrt{3} \neq 0$ Les vecteurs \vec{u} et \vec{v} ne sont pas colinéaires

Exercice 03:

On considère les points C(2; 4), D(-4; 3), F(-1; -2) et R(-2; 7)

1. Démontrer que le quadrilatère FCRD est un trapèze.

On démontre que les droites (FC) et (RD) sont parallèles : il suffit de prouver que les deux vecteurs \overrightarrow{FC} et \overrightarrow{RD} sont colinéaires.

$$C(2; 4)$$
 et $F(-1; -2)$ donc $\overrightarrow{FC}(3; 6)$

$$D(-4; 3)$$
 et $R(-2; 7)$ donc $\overrightarrow{RD}(-2; -4)$

On a : $3 \times (-4) - 6 \times (-2) = 0$ donc \overrightarrow{FC} et \overrightarrow{RD} sont colinéaires.

Donc les droites (FC) et (RD) sont parallèles et FCRD est un trapèze.

On appelle L le point d'intersection de la droite (DR) avec l'axe des ordonnées, c'est-à-dire le point de la droite (DR) ayant pour abscisse 0.

On note y l'ordonnée de L.

2. En utilisant la colinéarité des vecteurs \overrightarrow{DR} et \overrightarrow{DL} trouver une relation vérifiée par y.

L est le point d'intersection de (DR) avec l'axe des ordonnées. Par hypothèse, les points D, R et L sont alignés, donc les vecteurs \overrightarrow{DR} et \overrightarrow{DL} sont donc colinéaires.

On sait que :
$$\overrightarrow{DR}(2;4)$$
et $\overrightarrow{DL}(4;y-3)$

La condition de colinéarité s'écrit 2 X (y-3)-4 X 4=0 soit 2y-22=0

La relation vérifiée par y est : 2y - 22 = 0

3. Calculer y.

L'équation précédente a pour solution y = 11. Donc L a pour coordonnées (0 ; 11)

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Mathématiques : Géométrie Géométrie plane Vecteurs colinéaires - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Vecteurs colinéaires - Première - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Mathématiques : Géométrie Géométrie plane Equation cartésienne d'une droite PDF à imprimer
- Exercices Première 1ère Mathématiques : Géométrie Géométrie plane Produit scalaire PDF à imprimer
 - Exercices Première 1ère Mathématiques : Géométrie Géométrie plane Vecteurs PDF à imprimer

Besoin d'approfondir en : Première - 1ère Mathématiques : Géométrie Géométrie plane Vecteurs colinéaires

• Cours Première - 1ère Mathématiques : Géométrie Géométrie plane Vecteurs colinéaires