Radian, Mesure d'un angle orienté - Correction

Exercice 01 : Radians et degrés

Soit M un point du cercle trigonométrique. On note t la mesure en radians de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$ appartenant $[0; 2\pi[$ et α la mesure en degrés de l'angle au centre \widehat{IOM} .

Les nombres t et α sont liés par la formule $\frac{t}{2\pi} = \frac{\alpha}{360}$.

a. Donner la mesure en degrés des angles dont une mesure en radians est $\frac{\pi}{2}$, $\frac{\pi}{4}$, $\frac{\pi}{6}$, $\frac{5\pi}{6}$, $\frac{11\pi}{6}$.

$$\frac{t}{2\pi} = \frac{\alpha}{360} \text{ \'equivant \'a}: \ \alpha = \frac{t}{2\pi} \text{ X 360}$$

Si:
$$t = \frac{\pi}{2} \ radians$$
, $\alpha = \frac{\frac{\pi}{2}}{2\pi} \ X \ 360 = \frac{1}{4} X 360$, $donc \ \alpha = 90^{\circ}$

Si:
$$t = \frac{\pi}{4} \ radians$$
, $\alpha = \frac{\frac{\pi}{4}}{2\pi} \ X \ 360 = \frac{1}{8} X 360$, donc $\alpha = 45^{\circ}$

Si:
$$t = \frac{\pi}{6} \ radians$$
, $\alpha = \frac{\frac{\pi}{6}}{2\pi} \ X \ 360 = \frac{1}{12} X 360$, $donc \ \alpha = 30^{\circ}$

Si:
$$t = \frac{5\pi}{6} \text{ radians}, \ \alpha = \frac{\frac{5\pi}{6}}{2\pi} \times 360 = \frac{5}{12} \times 360, \quad donc \ \alpha = 150^{\circ}$$

Si:
$$t = \frac{11\pi}{6}$$
 radians, $\alpha = \frac{\frac{11\pi}{6}}{2\pi} X 360 = \frac{11}{12} X 360$, donc $\alpha = 330^\circ$

b. Donner une mesure en radians des angles dont une mesure en degrés est 36° 120°, 135°, 210°, 300°.

$$\frac{t}{2\pi} = \frac{\alpha}{360} \text{ \'equivant \'a}: t = \frac{\alpha}{360} X 2\pi$$

Si:
$$\alpha = 36^{\circ}$$
, $t = \frac{36}{360} X 2\pi = \frac{1}{10} X 2\pi$, $donc t = \frac{\pi}{5} radians$

Si:
$$\alpha = 120^{\circ}$$
, $t = \frac{120}{360} X 2\pi = \frac{1}{3} X 2\pi$, donc $t = \frac{2\pi}{3}$ radians

$$Si: \alpha = 135^{\circ}, \qquad t = \frac{135}{360} X 2\pi = \frac{3}{8} X 2\pi, \qquad donc \ t = \frac{3\pi}{4} \ radians$$

Si:
$$\alpha = 210^{\circ}$$
, $t = \frac{210}{360} X 2\pi = \frac{7}{12} X 2\pi$, donc $t = \frac{7\pi}{6}$ radians

Si:
$$\alpha = 300^{\circ}$$
, $t = \frac{300}{360} X 2\pi = \frac{5}{6} X 2\pi$, $donc t = \frac{5\pi}{3} radians$

c. Calculer la mesure, en degrés, de l'angle au centre \widehat{IOM} correspondant à la position du point M sur le cercle trigonométrique lorsque la mesure principale de l'angle orienté $(\overrightarrow{OI}, \overrightarrow{OM})$ est 1 radian.

$$Si\left(\overrightarrow{OI},\overrightarrow{OM}\right) = 1 radian, \quad \widehat{IOM} = \frac{1}{2\pi} X 360, \quad \widehat{IOM} \approx 57.3^{\circ}$$

Exercice 02: Angles orientés

Déterminer, dans chaque cas, la mesure principale en radians de l'angle dont une mesure en radians est :

a.
$$\frac{-7\pi}{2}$$

 $\frac{-7\pi}{2} = \frac{(1-8)\pi}{2} = \frac{\pi}{2} - 4\pi = \frac{\pi}{2} - 2X2\pi$

Comme $\frac{\pi}{2}$ appartient à] $-\pi$; π], la mesure principale de $\frac{-7\pi}{2}$ est $\frac{\pi}{2}$

b.
$$\frac{19\pi}{6}$$

$$\frac{19\pi}{6} = \frac{(24-5)\pi}{6} = \frac{-5\pi}{6} + 4\pi = \frac{-5\pi}{6} + 2X 2\pi$$

Comme $\frac{-5\pi}{6}$ appartient à] $-\pi$; π], la mesure principale de $\frac{19\pi}{6}$ est $\frac{-5\pi}{6}$

$$c. \frac{37\pi}{5}$$

$$\frac{37\pi}{5} = \frac{(40-3)\pi}{5} = \frac{-3\pi}{5} + 8\pi = \frac{-3\pi}{5} + 4 \times 2\pi$$

Comme $\frac{-3\pi}{5}$ appartient à] $-\pi$; π], la mesure principale de $\frac{37\pi}{5}$ est $\frac{-3\pi}{5}$

$$d.\frac{-27\pi}{4}$$

$$\frac{-27\pi}{4} = \frac{(-24-3)\pi}{4} = \frac{-3\pi}{4} - 6\pi = \frac{-3\pi}{4} - 3 \times 2\pi$$

Comme $\frac{-3\pi}{4}$ appartient à] $-\pi$; π], la mesure principale de $\frac{-27\pi}{4}$ est $\frac{-3\pi}{4}$

$$e.\frac{21\pi}{5}$$

$$\frac{21\pi}{5} = \frac{(20+1)\pi}{5} = \frac{\pi}{5} + 4\pi = \frac{\pi}{5} + 4X2\pi$$

Comme $\frac{\pi}{5}$ appartient à] $-\pi$; π], la mesure principale de $\frac{21\pi}{5}$ est $\frac{\pi}{5}$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Mathématiques : Fonctions Trigonométrie - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Angle orienté - Radian - Première - Exercices de mesure

Découvrez d'autres exercices en : Première - 1ère Mathématiques : Fonctions Trigonométrie

- Cosinus et sinus d'un réel Première Exercices de trigonométrie
- Angles orientés Cercle trigonométrique Première Exercices
- Angle orienté de deux vecteurs non nuls Première Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Mathématiques : Fonctions Trigonométrie Cosinus et sinus d'un réel PDF à imprimer
- Exercices Première 1ère Mathématiques : Fonctions Trigonométrie Le cercle trigonométrique PDF à imprimer
- Exercices Première 1ère Mathématiques : Fonctions Trigonométrie Mesure d'un angle orienté PDF à imprimer

Besoin d'approfondir en : Première - 1ère Mathématiques : Fonctions Trigonométrie

• Cours Première - 1ère Mathématiques : Fonctions Trigonométrie