Travail d'une force - Correction

Exercice 01 : QCM

Choisir la ou les bonne(s) réponse(s).

- 1. Le travail est:
- a. exprimé en joules ou en newtons mètres.
- b. toujours indépendant du chemin suivi.
- c. défini pour une force et un déplacement.
- 2. Le travail d'une force constante est défini par :

a.
$$W_{AB}(\vec{F}) = F.AB$$
.

b.
$$W_{AB}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB}$$
.

c.
$$W_{AB}(\vec{F}) = F.AB.\cos\alpha$$
.

- 3. Le travail d'une force de frottement est:
- a. positif.

b. négatif.

c. nul.

- 4. Le travail d'une force est nul:
- a. lorsque la force est perpendiculaire au déplacement.
- b. lorsqu'il n'y a pas de frottement.
- c. lorsque la force est colinéaire et de même sens que le déplacement.
- 5. La relation $W_{AB}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB}$:
- a. ne s'applique pas pour une force de frottement constante.
- b. est générale.
- c. s'applique pour une force constante.

Exercice 02 : Remorquage d'un pétrolier

Un remorqueur tire un paquebot sur une distance de 2 km, avec une force constante de valeur F=200 kN. Le câble de traction fait un angle de 30° avec la direction du déplacement rectiligne du paquebot.

1. Rappeler la relation qui permet de calculer le travail d'une force constante. Préciser les unités.

Le travail de la force \vec{F} est défini par : $W_{AB}(\vec{F}) = \vec{F} \cdot \overrightarrow{AB} = F \cdot AB \cdot \cos \alpha$.

Unités: W: joules (J), F: newton (N) et AB en mètre (m).

2. Calculer le travail de la force exercée par le câble sur le paquebot.

On a
$$F = 200 \text{ kN} = 2 \text{ x } 10^5 \text{ N}$$
, $AB = 2 \text{km} = 2 \text{ x } 10^3 \text{ m}$.

On obtient : W =
$$\vec{F}$$
. \overrightarrow{AB} = F . AB . $cos\alpha$ = 2. 10^5 . 2. 10^3 . $cos 30^\circ$ = 3,46. 10^8 J

Exercice 03: Planeur

Parti du point A (altitude $h_A = 200m$), un planeur atteint un point B (altitude $h_B = 1200m$) grâce aux courants ascendants, puis rejoint sa base de départ, point C (altitude $h_C = 100m$).

La masse du planeur est m = 0.25 t. on prendra $g = 10 \text{ N.kg}^{-1}$.

- 1. Calculer le travail du poids :
- a. à l'issue de la phase ascensionnelle.

Lors de la phase ascensionnelle d'une dénivellation h, le travail du poids est négatif et est donné par :

$$W_1(\vec{P}) = -m.g.h = -mg(h_B - h_A) = -0.25 \times 10^2 \times 10 \times (1200 - 200) = -2.5 MJ.$$

b. au cours de la descente.

Au cours de la descente d'une dénivellation h', le travail du poids est positif et est donné par :

$$W_2(\vec{P}) = m. g. h' = mg(h_B - h_C) = 0.25 \times 10^2 \times 10 \times (1200 - 100) = 2.75 MJ.$$

2. Calculer le travail du poids entre A et C. Conclure.

Le travail du poids entre A et C est positif (A plus haut que C net le travail est moteur) et est donné par :

$$W_3(\vec{P}) = m. g. h'' = mg(h_A - h_C) = 0.25 \times 10^2 \times 10 \times (200 - 100) = 0.25 MJ.$$

On remarque que $W_3 = W_1 + W_2$; le travail du poids d'un corps ne dépend pas du chemin suivi.

Le poids est une force conservative.

Pass Education

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Terminale Physique - Chimie : Physique Travail, énergie mécanique Travail d'une force - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Travail d'une force - Terminale - Exercices à imprimer

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Terminale Physique Chimie : Physique Travail, énergie mécanique Energie mécanique PDF à imprimer
- Exercices Terminale Physique Chimie : Physique Travail, énergie mécanique Energies potentielle PDF à imprimer

Besoin d'approfondir en : Terminale Physique - Chimie : Physique Travail, énergie mécanique Travail d'une

- Cours Terminale Physique Chimie : Physique Travail, énergie mécanique Travail d'une force
- <u>Vidéos pédagogiques Terminale Physique Chimie : Physique Travail, énergie mécanique Travail d'une force</u>