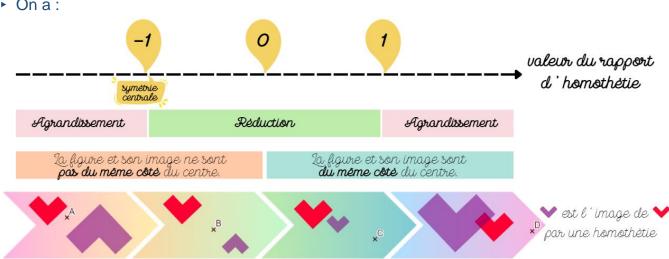
Constructions et propriétés des homothéties

Je révise mon brevet pas à pas.

Correction

Préreguis : cours « Introduction sur les homothéties ».

- ► Une homothétie est une transformation géométrique, plus précisément un agrandissement ou une réduction d'une figure géométrique, définie par un centre et un nombre, appelé rapport.
- On a :



Construire l'image d'une figure par homothétie.

Méthode pour construire l'image d'une figure par une homothétie de rapport positif.

→ On construit **l'image de chaque point** caractéristique de la figure.

Pour construire l'image d'un point M par l'homothétie de centre O et de **rapport positif** *k* :

- (1) On trace la demi-droite [OM) : l'image M' se trouve du même côté de M par rapport à O, donc on prolonge du côté de M pour un rapport positif.
- (2) Si besoin, on mesure OM, puis on calcule $k \times OM$.
- (3) On place M' sur [OM) tel que : $0M' = k \times 0M$

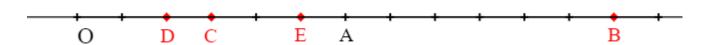
Exemple: rapport k = 3

- Je trace [OM);
- OM = 2,7 cm; je calcule $3 \times 2,7 = 8,1$;
- je place M' sur [OM) tel que OM' = 8,1 cm.

M' 2.7

> Lorsqu'on construit une homothétie de rapport positif, le point et son image se trouvent du même « côté » par rapport au centre.

- Sur la figure ci-dessous, placer :
- B l'image de A par l'homothétie de centre O et de rapport 2 ;
- C l'image de A par l'homothétie de centre O et de rapport 0,5 ;
- D l'image de A par l'homothétie de centre O et de rapport $\frac{1}{3}$;
- E l'image de <u>D</u> par l'homothétie de centre <u>B</u> et de rapport 0,7.



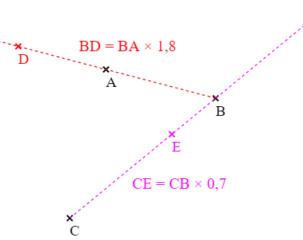
- Construis en complétant les programmes de construction :
- le point D, image de A par l'homothétie de centre B et de rapport 1,8 ;

Je trace la droite (AB) en prolongeant bien du côté de A.

AB = $\frac{3}{3}$ cm; je calcule $\frac{1,8}{3} \times \frac{3}{3} = \frac{5,4}{5}$ cm.

Je place D du même côté de A tel que :

BD = 5.4 cm.



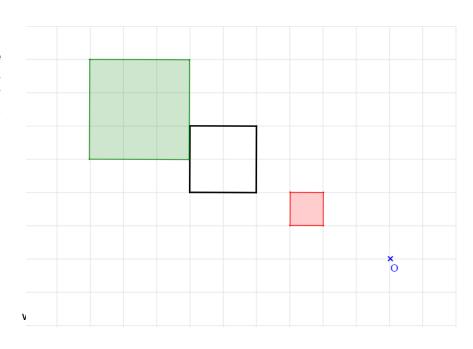
- le point E, image de B par l'homothétie de centre C et de rapport 0,7.

Je trace la droite (BC) en prolongeant bien du côté de B.

BC = $\frac{5}{5}$ cm; je calcule $\frac{0.7}{5} \times \frac{5}{5} = \frac{3.5}{5}$ cm.

Je place E du même côté de B tel que CE = 3,5 cm.

Construis en rouge l'image du carré ci-dessous par l'homothétie de centre O et de rapport 0,5, puis en vert son image par l'homothétie de centre O et de rapport 1,5.



Méthode pour construire l'image d'une figure par une homothétie de rapport négatif.

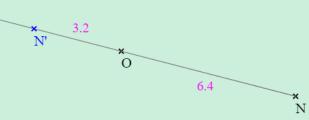
→ On construit **l'image de chaque point** caractéristique de la figure.

Pour construire l'image d'un point N par l'homothétie de centre O et de **rapport négatif** -k:

- ① On trace la demi-droite [NO) : l'image N' se trouve de l'autre côté de N par rapport à O, donc on prolonge du côté de O pour un rapport négatif.
- ② Si besoin, on mesure ON, puis on calcule $k \times 0$ N.
- 3 On place N' sur [NO) tel que : $0N' = k \times 0N$

Exemple: rapport k = -0.5

- Je trace [NO);
- ON = 6,4 cm; je calcule $0.5 \times 6.4 = 3.5$;
- je place N' sur [NO) de l'autre côté de O, tel que ON' = 3,2 cm.



Lorsqu'on construit une homothétie de rapport **négatif**, le point et son image se trouvent d'un côté et de l'autre du centre.

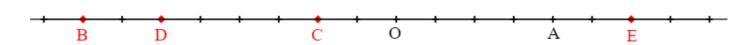
Sur la figure ci-dessous, placer :

B l'image de A par l'homothétie de centre O et de rapport – 2 ;

C l'image de A par l'homothétie de centre O et de rapport – 0,5 ;

D l'image de A par l'homothétie de centre O et de rapport $-\frac{3}{2}$;

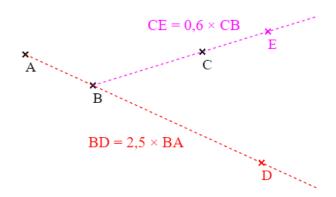
E l'image de \underline{D} par l'homothétie de centre O et de rapport – 1.



Que dire des points D et E?

Ils sont symétriques par rapports à O (c'est une symétrie centrale), c'est-à-dire image l'un de l'autre par l'homothétie de centre O et de rapport – 1.

Construis en complétant les programmes de construction :



- le point D, image de A par l'homothétie de centre B et de rapport - 2,5 ;

Je trace la droite (AB) en prolongeant bien du côté de B.

AB = $\frac{2}{3}$ cm; je calcule $\frac{2.5}{3} \times \frac{2}{3} = \frac{5}{3}$ cm.

Je place D de l'autre côté de A tel que : BD = 5 cm.

- le point E, image de B par l'homothétie de centre C et de rapport – 0,6.

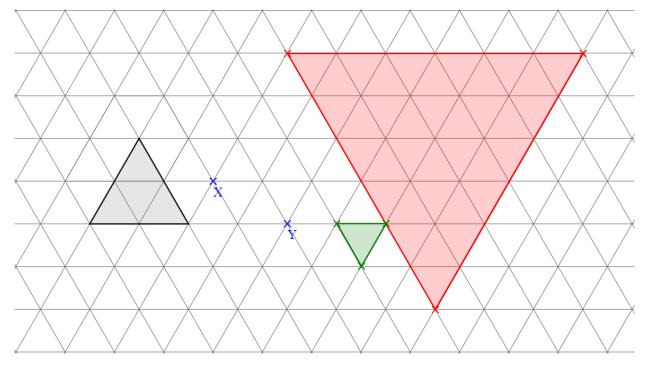
Je trace la droite (BC) en prolongeant bien du côté de C.

BC = $\frac{3}{3}$ cm; je calcule $\frac{0.6}{3} \times \frac{3}{3} = \frac{1.8}{1.8}$ cm.

Je place E de l'autre côté de B tel que : CE = 1,8 cm.

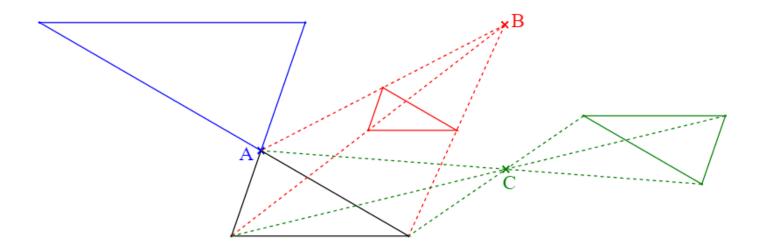
Construis:

- en rouge l'image du triangle par l'homothétie de centre X et de rapport 3 ;
- puis en vert son image par l'homothétie de centre Y et de rapport 0,5.



Construis:

- en bleu l'image du triangle par l'homothétie de centre A et de rapport 1,5 ;
- puis en rouge son image par l'homothétie de centre B et de rapport 0,5 ;
- et enfin en vert son image par l'homothétie de centre C et de rapport 0,8.



Propriétés d'une homothétie.

Méthode pour utiliser les propriétés d'une homothétie.

- ① Une homothétie conserve : l'alignement, le parallélisme, les milieux et les angles.
 - → En associant un élément et son image, on peut **déterminer certaines de ses** caractéristiques (un milieu, un angle, ...).
- ② L'image d'un segment ou d'une droite par une homothétie est un segment ou une droite qui lui est parallèle.
- 3 Deux figures homothétiques sont **semblables** : l'une est une **réduction** ou un **agrandissement** de l'autre.

L'homothétie ne conserve pas les longueurs et les aires mais les « transforme » :

→ Leurs côtés sont proportionnels.

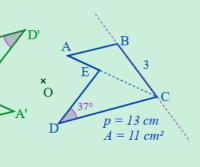
On peut **calculer des côtés avec le coefficient** d'agrandissement / réduction qui est la distance à zéro du rapport de l'homothétie (une valeur positive).

→ Si les longueurs sont multipliées par k, les aires sont multipliées par k².

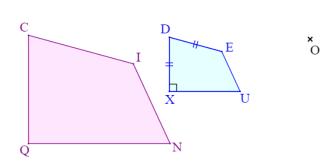
Exemple:

A'B'C'D'E' est l'image de ABCDE par l'homothétie de centre O et rapport – 1,2 :

D' est l'image de D, donc : D = 37°.
A, E et C sont alignés, donc leurs images A', E' et C' le sont aussi.



- ② [B'C'] est l'image de [BC] donc (B'C') // (BC).
- (3) BC = 3 cm donc B'C' = **1**, **2** × 3 = 3,6 cm $p_{ABCDE} = 13 \ cm \text{ c'est une longueur, donc}: \ p_{A'B'C'D'E'} = 13 \times \mathbf{1}, \mathbf{2} = 15,6 \ cm$ $A_{ABCDE} = 11 \ cm^2, \ donc \ A_{A'B'C'D'E'} = 11 \times \mathbf{1}, \mathbf{2}^2 = 15,84 \ cm^2.$
- Sur la figure ci-contre, le quadrilatère CINQ est l'image de DEUX par l'homothétie de centre O et de rapport 2.



1. Détermine deux segments égaux :

Les côtés [DE] et [DX] sont égaux, donc leurs images, les côtés [CI] et [CQ], sont égaux car une figure et son image par homothétie sont semblables.

2. Détermine deux droites perpendiculaires :

 $\widehat{\text{CQN}} = \widehat{\text{DXU}} = 90^{\circ}$ car l'homothétie conserve les angles. Donc les droites (CQ) et (QN) sont perpendiculaires.

3. Détermine deux droites parallèles :

Un segment et son image par homothétie sont parallèles, donc :

(DE) // (CI); (EU) // (IN); (UX) // (NQ); (CQ) // (DX)

4. Le périmètre de DEUX est 7 cm ; détermine le périmètre de CINQ :

Un périmètre est une longueur, cette homothétie multiplie les longueurs par 2. Le périmètre de CINQ est égal à $7 \times 2 = 14$ cm.

5. L'aire du quadrilatère DEUX est 3 cm² ; détermine l'aire de CINQ.

Cette homothétie multiplie les aires par 2^2 , donc l'aire de CINQ est $3 \times 2^2 = 3 \times 4 = 12$ cm²

- VRAI/FAUX : pour chaque affirmation, indique si elle est vraie ou fausse en justifiant ou corrigeant.
- Un cercle de rayon 5 cm a pour image un cercle de rayon 8 cm.

Affirmation 1: le rapport d'homothétie (positif) est $\frac{5}{8}$. FAUX

Les longueurs sont multipliées par ce coefficient : $5 \times ... = 8$

Le coefficient est
$$\frac{8}{5}$$
 car $5 \times \frac{8}{5} = 8$ mais $5 \times \frac{5}{8} = \frac{25}{8} \neq 8$

Un carré de côté 10 cm subit une homothétie de rapport 5.

Affirmation 2 : son image a un périmètre de 200 cm. VRAI

Les longueurs, dont le périmètre, sont multipliées par 5.

$$C \hat{o} t \hat{e}_1 = 10 \ cm$$
 pour l'image : $C \hat{o} t \hat{e}_2 = C \hat{o} t \hat{e}_1 \times 5 = 10 \times 5 = 50 \ cm$ $P \hat{e} r i m \hat{e} t r e_1 = 10 \times 4 = 40 \ cm$ $P \hat{e} r i m \hat{e} t r e_2 = C \hat{o} t \hat{e}_2 \times 4 = 50 \times 4 = 200 \ cm$ $ou P \hat{e} r i m \hat{e} t r e_2 = P \hat{e} r i m \hat{e} t r e_1 \times 5 = 200 \ cm$

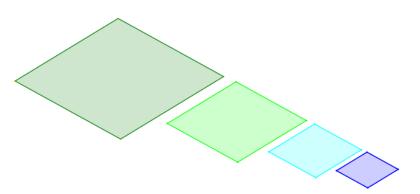
■ Un triangle d'aire 40 cm² a pour image un triangle d'aire 10 cm².

Affirmation 3: le rapport d'homothétie est forcément – 4. FAUX

$$10 \div 40 = 0,25$$
 L'aire a été multipliée par 0,25 (= k^2)

$$\sqrt{0,25} = 0,5$$
 Le rapport est 0,5 ou - 0,5.

On a répété une homothétie de centre O et de rapport 1,5 en partant du losange bleu (on l'a ensuite appliquée à son image le losange turquoise, et ainsi de suite).



×

Sachant que le petit losange bleu de départ a une aire de 1 cm², détermine l'aire du grand losange vert. Arrondis à 0,1 cm² près.

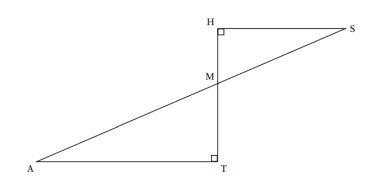
Cette homothétie multiplie les aires par 1,5° c'est-à-dire 2,25.

$$Aire_{vert} = \underbrace{1 \times 2,25 \times 2,25 \times 2,25 \times 2,25}_{Aire\ turquoise} \times \underbrace{11,4\ cm^2}_{Aire\ vert\ clair}$$

On peut écrire : $Aire_{vert} = 1 \times 2,25^3$ Nombre d'homothéties répétées

Questions de brevet.

- 1. La figure ci-dessous n'est pas à l'échelle.
- les points M, A et S sont alignés ;
- les points M, T et H sont alignés ;
- MH = 5 cm; MS = 13 cm; MT = 7 cm.
- a. Parmi les transformations suivantes quelle est celle qui permet d'obtenir le triangle MAT à partir du triangle MHS ?



Une symétrie	Une symétrie	Une rotation	Une translation	Une homothétie
centrale	axiale	One rotation	One translation	One nomoniene

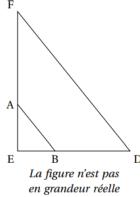
Les triangles MAT et MHS sont semblables, mais ils n'ont pas les mêmes dimensions, donc les symétries (axiales et centrales), les rotations et les translations conservant les longueurs, ce n'est pas possible. Par contre, une homothétie est possible. Ici, si on veut préciser, c'est une homothétie, de centre M et de rapport $\frac{-7}{5}$.

b. Sachant que la longueur MT est 1,4 fois plus grande que la longueur HM, un élève affirme : « L'aire du triangle MAT est 1,4 fois plus grande que l'aire du triangle MHS. » Cette affirmation estelle vraie ?

L'affirmation est fausse : on sait que le triangle MAT est un agrandissement du triangle MSH de rapport k = 1,4, donc les longueurs seront bien multipliées par 1,4, mais les surfaces seront multipliées par $k^2 = 1,4^2 = 1,96$.

- 2. Sur la figure ci-contre :
- les points E, A et F sont alignés ;
- · les points E, B et D sont alignés ;
- les droites (FD) et (AB) sont parallèles ;
- AE = 4.4 cm; EB = 3.3 cm; AB = 5.5 cm et BD = 6.6 cm.

Une homothétie de centre E transforme le triangle EAB en le triangle EFD. Quel est le rapport de cette homothétie ?



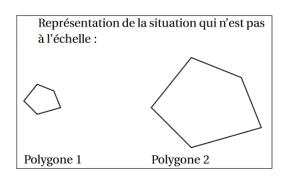
Une homothétie de centre E transformant le triangle EAB en le triangle EFD transforme notamment le segment [EB] en [ED], comme les points B et D sont sur la même demi-droite d'extrémité E, le rapport de l'homothétie est positif.

Il vaut : $ED \div EB = 9.9 \div 3.3 = 3$. Le rapport de cette homothétie est donc 3.

3. Le polygone 2 est l'image du polygone 1 par une homothétie de rapport 3.

L'aire du polygone 1 est égale à 11 cm².

Quelle est l'aire du polygone 2 ?



Lors d'une homothétie, les longueurs sont multipliées par un coefficient k, et les aires sont multipliées par k^2 donc :

$$A_{polygone\ 2} = A_{polygone\ 1} \times 3^2 = 11\ \times\ 9\ =\ 99\ cm^2.$$

Sur le site de **Education**, tu trouveras **d'autres ressources** pour réviser cette notion :

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices 3ème Mathématiques : Géométrie Les transformations du plan Transformation par homothétie - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Constructions et propriétés des homothéties - 3ème - Brevet des collèges avec Mon Pass Maths

Découvrez d'autres exercices en : 3ème Mathématiques : Géométrie Les transformations du plan Transform

- Constructions et propriétés 3ème Exercices avec les corrigés sur l'homothétie
- Homothétie (Introduction) 3ème Exercices avec les corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices 3ème Mathématiques : Géométrie Les transformations du plan Transformer une figure par une translation PDF à imprimer
- Exercices 3ème Mathématiques : Géométrie Les transformations du plan Transformer une figure par une rotation PDF à imprimer

Besoin d'approfondir en : 3ème Mathématiques : Géométrie Les transformations du plan Transformation pa

- Cours 3ème Mathématiques : Géométrie Les transformations du plan Transformation par homothétie
- <u>Evaluations 3ème Mathématiques : Géométrie Les transformations du plan Transformation par homothétie</u>
- <u>Vidéos pédagogiques 3ème Mathématiques : Géométrie Les transformations du plan Transformation par homothétie</u>
- <u>Vidéos interactives 3ème Mathématiques : Géométrie Les transformations du plan Transformation</u> par homothétie
- <u>Séquence / Fiche de prep 3ème Mathématiques : Géométrie Les transformations du plan Transformation par homothétie</u>