Suites arithmétiques - Correction

Exercice 01 : Raison d'une suite arithmétique.

Soit u_n une suite arithmétique telle que pour un certain n;

$$u_0 = 11$$
; $u_n = 433$; $u_0 + u_1 + \dots + u_n = 47064$

Déterminer le nombre entier *n* et la raison de la suite.

On sait que, pour tout naturel n:

$$S_n = u_0 + u_1 + \dots + u_n = (n+1)\frac{u_0 + u_n}{2} = (n+1)\frac{11 + 433}{2} = 222(n+1)$$

D'où : $222(n+1) = 47064$; $n = \frac{47064 - 222}{222} = 211$ $n = 211$
Or, pour tout naturel n, $u_n = u_0 + nr$; $r = \frac{u_n - u_0}{n} = \frac{433 - 11}{211}$ $r = 2$

Exercice 02 : Calcul des termes d'une suite arithmétique

Déterminer les termes réels u_0 , u_1 , u_2 , u_3 d'une suite arithmétique, sachant que leur somme est 20 et la somme de leur carré est 120. Aide : on pose : $u_0 = a - \frac{3r}{2}$, $u_1 = a - \frac{r}{2}$, $u_2 = a + \frac{r}{2}$, $u_3 = a + \frac{3r}{2}$.

on
$$a: u_0 = a - \frac{3r}{2}, u_1 = a - \frac{r}{2}, u_2 = a + \frac{r}{2}, u_3 = a + \frac{3r}{2}$$

D'où:

$$\begin{cases} u_0 + u_1 + u_2 + u_3 = 4a = 20\\ u_0^2 + u_1^2 + u_2^2 + u_3^2 = \left(a - \frac{3r}{2}\right)^2 + \left(a - \frac{r}{2}\right)^2 + \left(a + \frac{r}{2}\right)^2 + \left(a + \frac{3r}{2}\right)^2 = 120 \end{cases}$$

Donc:
$$\begin{cases} a = 5 \\ 4a^2 + 5r^2 = 120 \end{cases}$$

On obtient : $r^2 = 4$, $donc r = \pm 2$.

Pour
$$r = 2$$
, $u_0 = 2$, $u_1 = 4$, $u_2 = 6$, $u_3 = 8$

Pour r = -2,
$$u_0 = 8$$
, $u_1 = 6$, $u_2 = 4$, $u_3 = 2$

Exercice 03 : En économie

- a. Soit f la fonction définie sur \mathbb{R} par $f(x) = x^2 + 9x 4140$
- 1. Calculer *f*(60).

$$f(60) = 60^2 + 9 \times 60 - 4140 = 0$$

2. Résoudre l'équation f(x) = 0 et en déduire le signe de f(x) en fonction de x.

 $x^2 + 9x - 4140$ est un polynôme de la forme $ax^2 + bx + c = a(x - x_1)(x - x_2)$, x_1 et x_2 étant les racines de f.

$$f(x) = x^2 + 9x - 4140 = (x - 60)(x - x_2)$$

Considérons le terme constant des deux nombres :

$$-4140 = (-60)(-x_2)$$
; $x_2 = -\frac{4140}{60} = -69$

Les solutions de l'équation f(x) = 0 sont $\{-69; 60\}$

Si $x \in]-\infty$; -69[U]60; $+\infty[f(x)$ est strictement positive.

Si
$$x = -69$$
 ou $x = 60$] $-\infty$; -69 [U]60; $+\infty$ [; $f(x)$ nulle.

Si $x \in]-69$; 60; f(x) est strictement négative.

- b. On dispose d'une subvention de $82800 \in$ pour atteindre dans un désert une nappe d'eau souterraine. Le coût du forage est fixé à $200 \in$ pour le premier mètre creusé, $240 \in$ pour le deuxième, $280 \in$ pour le troisième et ainsi de suite en augmentant de $40 \in$ par mètre creusé. On note u_n le coût en euros du n-ième mètre creusé. (n, n) entier naturel).
- 1. Déterminer u_5 . Préciser la nature de suite (u_n) et exprimer u_n en fonction de n.

$$u_1 = 200$$

 $u_2 = 200 + 40 = 240$
 $u_3 = 240 + 40 = 280$
 $u_4 = 280 + 40 = 320$
 $u_5 = 320 + 40 = 360$

Pour tout entier naturel n, $u_{n+1} = u_n + 40$

Donc la suite (u_n) est suite arithmétique de raison 40 et de premier terme $u_1 = 200$.

$$u_n = u_1 + (n-1)X \ 40 = 200 + (n-1)X \ 40 = 200 + 40n - 40$$

 $u_n = 40n + 160$

2. Pour tout entier non nul n, on désigne par S_n le coût total en euros du forage d'un puits de n mètres. Montrer que le coût total du forage d'un puits de n mètres est $20n^2 + 180$.

$$S_n = u_1 + u_2 + \dots + u_n = \frac{n(u_1 + u_n)}{2}$$

$$S_n = \frac{n(200 + 40n + 160)}{2} = \frac{n}{2}(40n + 360)$$

$$S_n = 20n^2 + 180$$

3. A l'aide de la question a., indiquer la profondeur maximale du forage que l'on peut réaliser.

Soit n le nombre de mètres qu'il sera possible de creuser avec une subvention de 82 800 euros. L'entier naturel n doit vérifier :

$$S_n \le 82800$$
 ; $20n^2 + 180 \le 82800$; $20n^2 + 180 - 82800 \le 0$

On divise par $20 : n^2 + 9 - 4140 \le 0$

D'après l'étude des signes faite au a., les entiers solution sont les entiers compris entre 1 et 60.

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Mathématiques : Les suites Suites arithmétiques - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Suites arithmétiques - Première - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Mathématiques : Les suites Génération d'une suite numérique PDF à imprimer
 - Exercices Première 1ère Mathématiques : Les suites Limite d'une suite PDF à imprimer
 - Exercices Première 1ère Mathématiques : Les suites Sens de variation d'une suite PDF à imprimer
 - Exercices Première 1ère Mathématiques : Les suites Suites géométriques PDF à imprimer

Besoin d'approfondir en : Première - 1ère Mathématiques : Les suites Suites arithmétiques

• Cours Première - 1ère Mathématiques : Les suites Suites arithmétiques