Solution tampon - Correction

Exercice 01:

On souhaite préparer une solution tampon à pH = 5,0 . Pour cela, on prélève un volume $V_1 = 100$ mL d'une solution d'acide éthanoïque CH_3CO_2H à la concentration $C_1 = 2,0.10^{-1}$ mol. L^{-1} . On y ajoute un volume V_2 d'une solution de soude $(Na^+ + OH^-)$ à la concentration $C_2 = 1,0$ mol. L^{-1} . La réaction entre l'acide éthanoïque et les ions hydroxyde est totale.

1. Calculer le rapport des concentrations de l'acide éthanoïque et de sa base conjuguée dans la solution tampon. En déduire le rapport entre les quantités de matière des deux espèces à l'état final. Pour le couple $CH_3CO_2H/CH_3CO_2^-$ on donne $pK_a=4.8$.

A l'équilibre, on a :

$$\frac{[\text{CH}_3\text{CO}_2\text{H}]_f}{[\text{CH}_3\text{CO}_2^-]_f} = \frac{[\text{H}_3\text{O}^+]_f}{\text{K}_a} = \frac{10^{-5}}{10^{-4.8}} = 0.63$$

En multipliant numérateur et dénominateur par le volume total de la solution à l'état final, on obtient :

$$\frac{\left(n_{\text{CH}_3\text{CO}_2\text{H}}\right)_f}{\left(n_{\text{CH}_3\text{CO}_2^-}\right)_f} = 0.63$$

2. Ecrire l'équation de bilan de la réaction. Doit-on introduire la soude en excès ou en défaut par rapport à l'acide éthanoïque ?

La réaction est :

$$CH_3CO_2H + HO^- \rightarrow CH_3CO_2^- + H_2O$$

Or une solution tampon est un mélange de l'acide faible (CH₃CO₂H) et de sa base conjuguée (CH₃CO₂). Il faut donc introduire la soude en défaut, afin qu'il reste de l'acide éthanoïque à l'état final.

Exercice 02:

On réalise un tampon ammonium (mélange de NH_3 et de NH_4^+) à pH = 9,5 de façon suivante : Dans V=200 mL d'une solution aqueuse d'ammoniac NH_3 à concentration $c_1 = 2,0.10^{-2}$ mol. L^{-1} , on dissout

une quantité de matière n de chlorure d'ammonium $(NH_4^+ + Cl^-)$ solide. Calculer n, sachant que $pK_a = 9,2$ pour le couple NH_4^+/NH_3 .

On calcule le rapport des concentrations de l'ion ammonium et de l'ammoniac à l'équilibre :

$$\frac{[NH_4^+]_f}{[NH_3]_f} = \frac{[H_3O^+]_f}{K_a} = \frac{10^{-9.5}}{10^{-9.2}} = 10^{-0.3} = 0.5$$

On déduit que dans la solution tampon : $[NH_3]_f = 0.5 C_1$

La quantité de matière de NH₄ à introduire est alors :

$$n = 0.5 X C_1 X V = 2.0.10^{-3} \text{ mol}$$

Exercice 03:

On prépare un tampon borate de pH = 9,1 par mélange d'un volume V_0 d'une solution d'acide chlorhydrique ($H_3O^+ + Cl^-$) à la concentration C_1 et d'un volume V_0 d'une solution d'ions borate BO_2^- à la concentration $C_2 = 4,6.10^{-1}$ mol. L^{-1} . La réaction entre l'ion borate et l'ion oxonium est totale. Pour le couple (HBO_2/BO_2^-), pK_a = 9,2.

1. Ecrire l'équation bilan de la réaction mise en jeu, et exprimer les quantités de matière des réactifs à l'état initial.

On introduit initialement des quantités de matière C_1 . V_0 de H_3O^+ et C_2 . V_0 de BO_2^- .

La réaction a lieu entre ces deux ions :

$$H_3O^+ + BO_2^- \to HBO_2 + H_2O$$

2. Calculer la concentration C_1 .

Dans une solution tampon, l'acide et sa base conjuguée coexistent. L'acide chlorhydrique doit être introduit en défaut par rapport aux ions borate. Comme la réaction est totale, il y a épuisement des ions oxonium :

$$C_1V_0 - x_f = 0 \text{ soit } x_f = C_1V_0$$

Sachant que le volume final est de $2V_0$. Les concentrations à l'équilibre sont :

$$[BO_2^-]_f = \frac{C_2V_0 - x_f}{2.V_0} = \frac{C_2 - C_1}{2}$$
 et $[HBO_2]_f = \frac{x_f}{2V_0} = \frac{C_1}{2}$

D'autre part, à l'état final :

$$\frac{[BO_2^-]_f}{[HBO_2]_f} = \frac{K_a}{[H_3O^+]_f} = \frac{10^{-9.2}}{10^{-9.3}} = 0.79$$

En remplaçant les concentrations par leurs expressions on obtient :

$$0.79 = \frac{C_2 - C_1}{C_1} = \frac{C_2}{C_1} - 1$$
, soit $C_1 = \frac{C_2}{1,79} = 2,6.10^{-1} \text{mol. L}^{-1}$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Terminale Physique - Chimie : Chimie Transformations par échange de protons Solutions tampon - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Solution tampon - Terminale - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Terminale Physique Chimie : Chimie Transformations par échange de protons Acides et bases PDF à imprimer
- Exercices Terminale Physique Chimie : Chimie Transformations par échange de protons Réactions d'échange de proton PDF à imprimer

Besoin d'approfondir en : Terminale Physique - Chimie : Chimie Transformations par échange de protons So

- <u>Cours Terminale Physique Chimie : Chimie Transformations par échange de protons Solutions</u> tampon
- <u>Vidéos pédagogiques Terminale Physique Chimie : Chimie Transformations par échange de</u> protons Solutions tampon