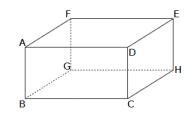
Patron et perspective cavalière

Correction

Exercices

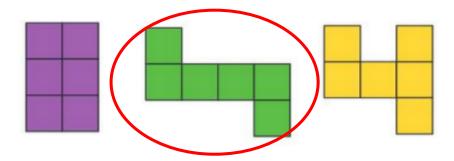


1 * Complète les propriétés permettant de représenter un solide en perspective cavalière :

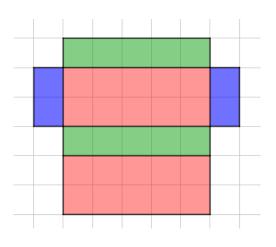
Deux arêtes parallèles et de même longueur sont représentées par deux segments parallèles et de même longueur. Les arêtes cachées sont dessinées en pointillés.

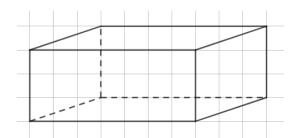
2* A partir de la perspective cavalière du pavé droit, complète le tableau suivant en mettant des croix dans les cases qui conviennent.

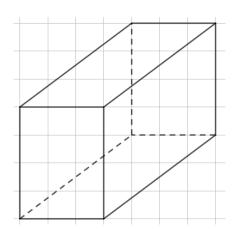
	Vrai	Faux
Sur le dessin, la face ADEF est un rectangle.		X
Dans la réalité, la face ADEF est un rectangle.	X	
Dans la réalité, l'angle \widehat{EDC} est droit.	X	
Sur le dessin, les droites (GH) et (EF) sont parallèles.	X	
La face EFHG est représentée en vraie grandeur.	Х	



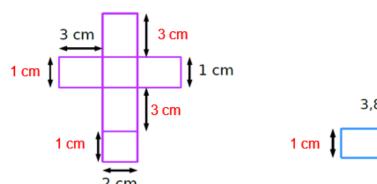
3* 1) Pourquoi la figure suivante n'est pas le patron d'un cube ?

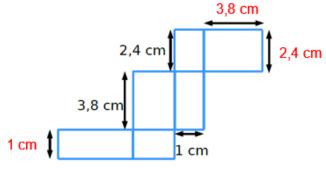

La figure est composée d'uniquement de 5 carrés, alors qu'il devrait en avoir 6.

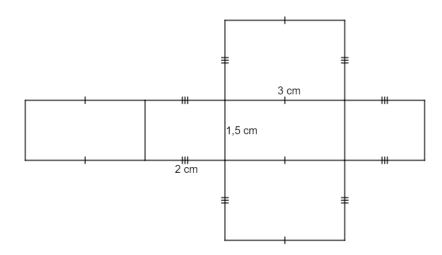

2) Parmi les figures suivantes, entoure celle qui est le patron d'un cube.



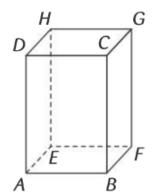
4 Complète la figure suivante pour qu'elle représente le patron d'un pavé droit. Colorie les faces parallèles de la même couleur.




5** Complète les représentations en perspective cavalière pour obtenir des pavés droits.



6 ** Voici des patrons de pavé droit. Complète à côté de chaque flèche la longueur correspondante.



7 ** Trace un patron d'un pavé droit de longueur 3 cm, largeur 1,5 cm et hauteur 2 cm.

8*** Voici la représentation en perspective cavalière d'un pavé droit. On a de plus EF = 5 cm, BC = 9 cm et DH = 2 cm.
1) Dans la réalité, que peut-on dire des droites (AB) et (BF) ? Justifie. Les droites (AB) et (BF) sont perpendiculaires. En effet, ABFE est un rectangle puisque c'est une face d'un pavé droit.

- 2) Quelles faces ont pour dimensions 5 cm et 2 cm? Quelle est leur position l'une par rapport à l'autre? Les faces ABFR et DCGH ont pour dimensions 5 cm et 2 cm et elles sont opposées.
- 3) Quelle est la longueur HG dans la réalité ? On a HG = 5 cm. En effet, les faces ABEF et DCGH sont opposées donc identiques : HG = EF = 5 cm.

4) Sur le dessin, la longueur DH aura-t-elle forcément 2 cm de longueur ? L'arrête [DH] appartient par exemple à la face DCGH qui n'est pas une face avant ou arrière. Elle n'est donc pas forcément représentée en vraie grandeur. La longueur DH ne vaut donc pas forcément 2 cm dans la réalité.			

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices 6ème Mathématiques : Géométrie Solides et patrons - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Patron et perspective cavalière – Exercices de géométrie pour la 6ème

Découvrez d'autres exercices en : 6ème Mathématiques : Géométrie Solides et patrons

- Le cube et le pavé droit Exercices de géométrie pour la 6ème
- Les solides Exercices de géométrie pour la 6ème
- Volume d'un solide Exercices de géométrie pour la 6ème
- Volume du cube et du pavé droit Exercices de géométrie pour la 6ème
- Reconnaître et décrire un polyèdre 6ème Géométrie dans l'espace Révisions Exercices avec correction

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices 6ème Mathématiques : Géométrie Cercle et disque PDF à imprimer
- Exercices 6ème Mathématiques : Géométrie Côté, sommet, angle PDF à imprimer
- Exercices 6ème Mathématiques : Géométrie Droites parallèles PDF à imprimer
- Exercices 6ème Mathématiques : Géométrie Droites perpendiculaires PDF à imprimer
- Exercices 6ème Mathématiques : Géométrie Géométrie plane PDF à imprimer

Besoin d'approfondir en : 6ème Mathématiques : Géométrie Solides et patrons

- Cours 6ème Mathématiques : Géométrie Solides et patrons
- Evaluations 6ème Mathématiques : Géométrie Solides et patrons
- Vidéos pédagogiques 6ème Mathématiques : Géométrie Solides et patrons
- Vidéos interactives 6ème Mathématiques : Géométrie Solides et patrons
- Séquence / Fiche de prep 6ème Mathématiques : Géométrie Solides et patrons