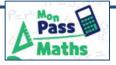
Reconnaître et utiliser les triangles semblables

Je révise mon brevet pas à pas.



Correction

Prérequis:

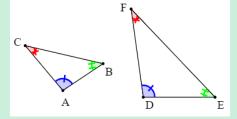
- ▶ Deux triangles sont dits **égaux ou isométriques** si leurs côtés sont deux à deux de même longueur. Des triangles égaux sont **superposables** et leurs angles ont la **même** mesure.
- La somme des angles d'un triangle est 180°.
 Un triangle isocèle a ses deux angles à la base égaux ; un triangle équilatéral a ses trois angles égaux à 60°.

Démontrer que deux triangles sont semblables.

Méthode pour démontrer que deux triangles sont semblables avec leurs angles.

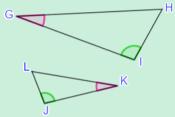
<u>Définition</u>: Deux triangles sont dits **semblables** si **leurs angles sont deux à deux de même mesure**.

Exemple: ABC et DEF sont des triangles semblables.



Méthode: pour démontrer que **deux triangles sont semblables**, il suffit de prouver que **seulement 2 angles** d'un triangle sont égaux à 2 angles d'un autre triangle (avec la propriété de la somme des 3 angles égale à 180°, les troisièmes angles seront aussi égaux).

Exemple:

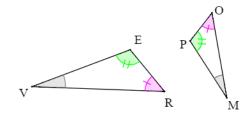


On a :
$$\widehat{GIH} = \widehat{LIK}$$
 et $\widehat{IGH} = \widehat{LKI}$.

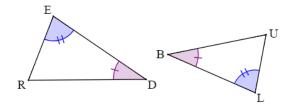
 \rightarrow Les triangles GHI et JKL ont deux paires d'angles deux à deux égaux, ce sont donc des triangles semblables et on déduit donc que $\widehat{GHI} = \widehat{JLK}$.

Dans chaque cas, détermine si les triangles sont semblables :

1



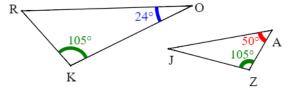
 $\widehat{VER} = \widehat{MPO}$; $\widehat{ERV} = \widehat{POM}$ et $\widehat{EVR} = \widehat{PMO}$ VER et POM ont leurs angles deux à deux de même mesure donc ils sont semblables. 2.



$$\widehat{RED} = \widehat{BLU}$$
 et $\widehat{RDE} = \widehat{LBU}$

RED et BLU ont deux paires d'angles deux à deux égaux donc ils sont semblables.

3.



La somme des angles d'un triangle est égale à 180°.

Dans le triangle ROK, on a :

$$\widehat{KRO} = 180 - (24 + 105) = 180 - 129 = 51^{\circ}$$

Donc $\widehat{RKO} = |\widehat{ZA}|$ mais $\widehat{KRO} \neq |\widehat{AZ}|$.

Les triangles ROK et JAZ n'ont pas leurs angles deux à deux égaux, ce ne sont donc pas des triangles semblables.

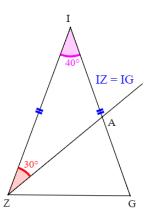
A partir des informations portées sur la figure suivante, prouve que les triangles ZIG et ZAG sont semblables.

ZIG est un triangle isocèle en I, donc ses angles à la base sont égaux ; et la somme des angles d'un triangle est égale à 180°, donc :

$$\widehat{IZG} = \widehat{IGZ} = (180 - 40) : 2 = 70^{\circ}$$

Donc dans ZAG, $\widehat{AGZ} = 70^{\circ}$ et $\widehat{AZG} = 70 - 30 = 40^{\circ}$

Les triangles ZIG et ZAG ont deux paires d'angles deux à deux égaux, ce sont donc des triangles semblables.



Méthode pour démontrer que deux triangles sont semblables avec la longueur de leurs côtés.

<u>Propriété</u>: Deux triangles sont **semblables** si les longueurs de leurs côtés sont deux à deux <u>proportionnelles</u>.

Etape ① : On repère les couples de côtés qui peuvent se correspondre (les plus petits côtés de chaque triangle ensemble, les plus grands, ...).

Etape ②: On calcule chacun des <u>trois quotients</u>, en utilisant toujours le même triangle au numérateur.

→ si ces trois quotients sont égaux, les triangles sont semblables et le coefficient de proportionnalité correspond au coefficient d'agrandissement (> 1) ou réduction (< 1) entre les deux triangles.

Exemple: ABC et DEF sont deux triangles tels que : AB = 4 cm; BC = 7 cm et AC = 5 cm; DE = 8 cm; EF = 6.4 cm; DF = 11.2 cm.

On identifie les côtés à associer :

Triangle ABC: AB = 4 cm; BC = 7 cm et AC = 5 cm; Plus petits côtés

Triangle DEF: DE = 8 cm; EF = 6,4 cm; DF = 11,2 cm.

Plus petits côtés

On calcule: $\left(\frac{triangle\ DEF}{triangle\ ABC}\right)$ $\frac{EF}{AB} = \frac{6.4}{4} = 1.6$; $\frac{DE}{AC} = \frac{8}{5} = 1.6$; $\frac{DF}{BC} = \frac{11.2}{7} = 1.6$

→ ABC et DEF ont les longueurs de leurs côtés deux à deux proportionnelles (avec un coefficient de proportionnalité de 1,6). Ce sont donc des **triangles semblables**.

- LEA et TOM sont deux triangles tels que : LE = 2 cm ; LA = 3 cm et EA = 4 cm ;

 TO = 10 cm ; TM = 5 cm ; OM = 7,5 cm.
- 1. Complète le tableau ci-contre en indiquant les côtés avec les lettres, puis en précisant leurs longueurs :

	Plus grands	Plus petits	
Côté du triangle LEA	EA = 4	LE = 2	LA = 3
Côté du triangle TOM correspondant	TO = 10	TM = 5	OM = 7,5

2. Vérifie s'il s'agit d'un tableau de proportionnalité.

On calcule les quotients : $10 \div 4 = 2.5$; $5 \div 2 = 2.5$; $7.5 \div 3 = 2.5$ Les quotients sont égaux, il y a proportionnalité (le coefficient de proportionnalité est 2.5).

3. Les triangles sont-ils semblables?

LEA et TOM ont les longueurs de leurs côtés deux à deux proportionnelles, ce sont donc des triangles semblables.

- Dans chaque cas, détermine si les deux triangles proposés sont semblables ; dans ce cas, précise le coefficient de proportionnalité.
- SVT et GEO sont deux triangles tels que : SV = 12 cm; ST = 8 cm et VT = 10 cm;
 GE = 6,4 cm; GO = 8 cm et EO = 9,6 cm.

Il faut associer correctement les côtés, et calculer les quotients :

$$\frac{EO}{SV} = \frac{9.6}{12} = 0.8$$
 ; $\frac{GE}{ST} = \frac{6.4}{8} = 0.8$; $\frac{GO}{VT} = \frac{8}{10} = 0.8$

SVT et GEO ont les longueurs de leurs côtés deux à deux proportionnelles, avec un coefficient de proportionnalité de 0,8 (ou 1,25 si on choisit de calculer $\frac{triangle\ SVT}{triangle\ GEO}$). Ce sont donc des triangles semblables.

Il faut associer correctement les côtés, et calculer les quotients :

$$\frac{LC}{EP} = \frac{16}{6} = \frac{8}{3} \approx 2,67$$
 ; $\frac{CA}{PS} = \frac{17}{7} \approx 2,43$; $(\frac{LA}{ES} = \frac{18}{8} = 2,25)$

Les quotients ne sont pas égaux, EPS et LCA n'ont pas les longueurs de leurs côtés proportionnelles, ce ne sont donc pas des triangles semblables.

Méthode pour démontrer que deux triangles sont semblables avec un angle et des longueurs.

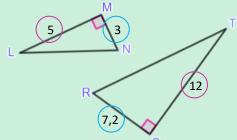
<u>Propriété</u>: Deux triangles sont **semblables** s'ils ont **un angle de même mesure compris** entre 2 côtés aux longueurs proportionnelles.

Etape 1 : On repère deux angles égaux.

Etape ②: On identifie les côtés des angles à associer (les plus petits côtés ensemble, et les plus grands ensemble).

Etape ③ : On calcule chacun des <u>deux quotients</u>, en utilisant toujours le même triangle au numérateur.

Exemple:



- On a :
$$\widehat{LMN} = \widehat{RST} = 90^{\circ}$$

(on identifie les côtés à associer)

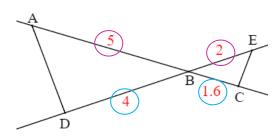
$$-\frac{RS}{MN} = \frac{7.2}{3} = 2.4$$
; $\frac{ST}{LM} = \frac{12}{5} = 2.4$

→ Les triangles LMN et RST ont un angle de même mesure compris entre 2 côtés aux longueurs proportionnelles, donc ils sont semblables.

On considère la figure ci-contre.

Les droites (AC) et (DE) se coupent en B ; on a : AB = 5 cm ; BD = 4 cm ; BE = 2 cm et BC = 1,6 cm.

Les triangles ABD et BCE sont-ils semblables ?



 $\widehat{ABD} = \widehat{EBC}$ car ce sont des angles **opposés** par le sommet.

Il faut associer correctement les côtés, et calculer les quotients : $\frac{AB}{BE} = \frac{5}{2} = 2,5$; $\frac{BD}{BC} = \frac{4}{1.6} = 2,5$

Les triangles ABD et BCE ont un angle de même mesure compris entre 2 côtés aux longueurs proportionnelles, donc ils sont semblables.

On considère la figure ci-contre. Les triangles FGI et GHI sont-ils semblables ?

$$\widehat{FIG} = \widehat{GIH} = 90^{\circ}$$

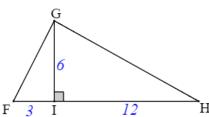
Dans FGI: FI = 3 et GI = 6

Dans GHI: GI = 6 et HI = 12 \times 2 $\frac{GI}{FI}$ = 2; $\frac{HI}{GI}$ = 2

$$\frac{GI}{FI} = 2 \quad ; \quad \frac{HI}{GI} = 2$$

Les triangles FGI et GHI ont un angle de même mesure compris

entre 2 côtés aux longueurs proportionnelles, donc ils sont semblables.



Utiliser les propriétés des triangles semblables

Méthode pour utiliser les propriétés des triangles semblables.

Si deux triangles sont semblables...

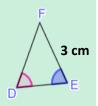
- (1) on repère les angles, sommets et côtés homologues (qui se correspondent).
- (2) alors, on peut utiliser une des propriétés :
 - les angles homologues sont égaux ;
 - les longueurs des côtés homologues sont proportionnelles ;
 - on a une relation d'agrandissement réduction d'un triangle à l'autre : les longueurs sont multipliées par un coefficient k, l'aire est multipliée par k^2 .

Exemple: ABC et DEF sont des triangles semblables:

Les sommets homologues sont : B et E ; A et D ; C et F.

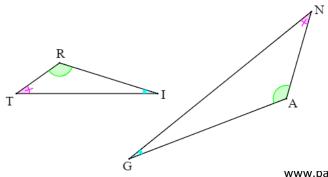
Les angles homologues sont \hat{B} et \hat{E} ; \hat{A} et \hat{D} ; \hat{C} et \hat{F} .

Les côtés homologues sont : [AB] et [DE] ; [AC] et [DF] ; [BC] et [EF].



- \rightarrow donc $\widehat{D} = \widehat{A} = 64^{\circ}$.
- \rightarrow on a donc l'égalité de quotients : $\frac{DE}{AB} = \frac{EF}{BC} = \frac{DF}{AC}$ or $\frac{EF}{BC} = \frac{3}{5} = 0.6$ donc $DF = AC \times 0.6 = 5.5 \times 0.6 = 3.3$ cm
- → les longueurs entre ABC et DEF sont multipliées par 0,6 donc l'aire est multipliée par 0,6² : $Aire_{DEF} = Aire_{ABC} \times 0.6^2 = 12 \times 0.6^2 = 4.32 \ cm^2.$

Les triangles TRI et ANG sont semblables. Complète :



Le sommet homologue à R est le sommet A.

L'angle homologue à \hat{T} est \hat{N} .

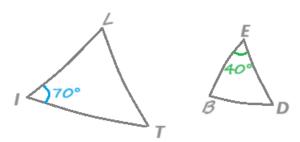
L'homologue au côté [RI] est [GA].

On a l'égalité : $\frac{RI}{CA} = \frac{TR}{NA} = \frac{TI}{CN}$

www.pass-education.fr

LIT et BED sont semblables, [IT] et [ED] sont homologues ainsi que [LI] et [BD].

Donne les mesures des angles des triangles, précise leur nature.



12 cm

Il faut repérer les sommets homologues :

- I et D, présents dans les deux couples de côtés homologues : [IT] et [ED] ; [LI] et [BD]
- T et E;
- Let B.

Donc:
$$\widehat{LIT} = \widehat{BDE} = 70^{\circ}$$
; $\widehat{LTI} = \widehat{BED} = 40^{\circ}$

De plus, la somme des angles d'un triangle est égale à 180° :

donc
$$\widehat{TLI} = \widehat{DBE} = 180 - (70 + 40) = 180 - 110 = 70^{\circ}$$

Ces triangles ont deux angles égaux, ils sont isocèles, respectivement en T et en E.

AIR et FEU sont deux triangles semblables tels que : $\underbrace{\frac{AI}{FE} \neq \frac{AR}{EU}}_{FU} \neq \frac{IR}{FU}$

Repère les sommets homologues et écris les égalités d'angles correspondantes.

Il faut repérer les sommets homologues : A et E ; I et F ; R et U.

Sommets présents dans les 2 premiers quotients

Sommets présents dans les 2 derniers quotients

Donc: $\widehat{RAI} = \widehat{FEU}$; $\widehat{AIR} = \widehat{EFU}$; $\widehat{ARI} = \widehat{EUF}$

- TWO et SIX sont deux triangles semblables.
- 1. Détermine les longueurs SX et SI.

Il faut repérer les sommets homologues :

Tet I; Wet S; Oet X.

Les côtés homologues sont donc :

[TW] et [IS]; [TO] et [IX]; [WO] et [SX].

Les côtés sont proportionnels : $\frac{IS}{TW} = \frac{IX}{TO} = \frac{SX}{WO}$ or $\frac{IX}{TO} = \frac{12}{8} = 1,5$

Donc $SI = TW \times 1.5 = 10 \times 1.5 = 15 \ cm$ et $SX = WO \times 1.5 = 14 \times 1.5 = 21 \ cm$.

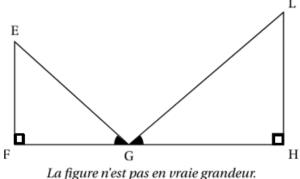
2. Détermine l'aire du triangle SIX.

Les longueurs entre TWO et SIX sont multipliées par 1,5 donc l'aire est multipliée par 1,5² :

$$Aire_{SIX} = Aire_{TWO} \times 1,5^2 = 40 \times 1,5^2 = 90 \ cm^2.$$

On considère la figure ci-contre dans laquelle :

- Les points F, G et H sont alignés
- (LH) et (FE) sont perpendiculaires à (FH) ;
- EF = 18 cm; FG = 24 cm; EG = 30 cm; GH = 38,4 cm
- $\widehat{EGF} = \widehat{LGH} = 37^{\circ}$.



La jigare n'est pas en vrate grana

a) Montrer que les triangles EGF et LGH sont semblables.

On a :
$$\widehat{EGF} = \widehat{LGH} = 37^{\circ}$$
 et $\widehat{EFG} = \widehat{LHG} = 90^{\circ}$

Les triangles EGF et LGH ont deux paires d'angles deux à deux égaux, ce sont donc des triangles semblables.

b) Parmi les propositions suivantes, quel est le coefficient d'agrandissement qui permet de passer du triangle EFG au triangle LHG ? Expliquer.

0,625	1,28	1,6	2,6

[GH] et [FG] sont deux côtés homologues, car tous les deux compris entre un angle de 90° et un angle de 37°.

Le coefficient d'agrandissement est : $\frac{GH}{FG} = \frac{38,4}{24} = 1,6$ (> 1 pour agrandir)

c) Quel est le périmètre du triangle LGH?

Lors d'un agrandissement, toutes longueurs sont multipliées par le même coefficient, donc :

$$LH = EF \times 1,6 = 18 \times 1,6 = 28,8 \ cm$$

 $LG = EG \times 1,6 = 30 \times 1,6 = 48 \ cm$
 $p\acute{e}rim\grave{e}tre = LH + LG + GH$
 $= 28,8 + 48 + 38,4 = 115,2 \ cm$

$$p\acute{e}rim\grave{e}tre_{EFG} = 18 + 24 + 30 = 72 \ cm$$

Lors d'un agrandissement, toutes longueurs sont multipliées par le même coefficient, donc :

$$p\acute{e}rim\grave{e}tre_{LGH}=72\times1,6=115,2~cm$$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices 3ème Mathématiques : Géométrie Les triangles Reconnaitre des triangles semblables - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Reconnaître et utiliser les triangles semblables - 3ème - Brevet des collèges avec Mon Pass Maths

Besoin d'approfondir en : 3ème Mathématiques : Géométrie Les triangles Reconnaitre des triangles semblal

- <u>Vidéos pédagogiques 3ème Mathématiques : Géométrie Les triangles Reconnaitre des triangles semblables</u>
- <u>Vidéos interactives 3ème Mathématiques : Géométrie Les triangles Reconnaitre des triangles semblables</u>