Réactions d'échange de proton - Correction

Exercice 01:

1. Lorsque pH=9,2, déterminer avec une calculatrice si :

$$Figspare H_30^+ = 6.3 \cdot 10^{-10} \text{ mol. L}^{-1}$$

$$ightharpoonup$$
 [H₃0⁺] = 1,0. 10⁻⁴ mol. L⁻¹

$$F [H_3 O^+] = 0.96 \text{ mol. L}^{-1}$$

2. Pour $[H_3O^+] = 8.7. \cdot 10^{-7} \text{ mol. L}^{-1}$, déterminer à l'aide d'une calculatrice si :

$$P = -6.0$$

$$> pH = 6.1$$

$$\rightarrow$$
 pH = 13,95

➤ 3. La constante d'acidité du couple NH₄/NH₃ s'écrit :

$$\succ K_a = \frac{[NH_3]_f}{[NH_4^4]_f} [H_3O^+]_f$$

$$F$$
 $K_a = \frac{[NH_4^+]_f [H_3 O^+]_f}{[NH_3]_f}$

$$ightharpoonup K_a = \frac{[NH_4^+]_f}{[NH_3]_f[H_3O^+]_f}$$

Par définition, la constante d'acidité s'écrit : $K_a = \frac{[NH_3]_f}{[NH_4^4]_f} [H_3O^+]_f$

4. Pour le couple $NH_4^+ - NH_3$, $pK_a = 9,2$, à pH = 7:

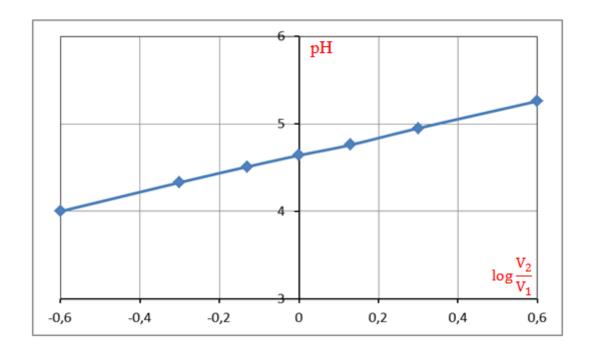
$$> [NH_3]_f > [NH_4^+]_f$$

$$\triangleright$$
 [NH₃]_f = [NH₄⁺]_f

$$\triangleright [NH_3]_f < [NH_4^+]_f$$

 $\rm pH < \, pK_a$ donc l'acide prédomine sur la base : $\rm [NH_3]_f < [NH_4^+]_f$

Exercice 02:


Afin de déterminer le p K_a du couple acide base, $H_3C-COOH/H_3C-COO^-$ noté AH/A^- , on mesure le pH de solutions contenant les deux espèces conjuguées de ce couple. On utilisera une solution S_1 contenant l'espèce A^- de concentration molaire $c_1=0,100$ mol. L^{-1} et une solution S_2 contenant l'espèce S_1 0 de concentration S_2 1 contenant l'espèce S_1 1 de concentration S_2 2 contenant l'espèce S_3 3 de concentration S_3 4 de concentration S_3 5 de concentration S_3 6 de concentration S_3 6 de concentration S_3 7 de concentration S_3 8 de concentration S_3 9 de concentr

Avec un pH-mètre, on mesure le pH de plusieurs mélanges réalisés dans des béchers. V_1 représente le volume de S_1 et V_2 représente celui de S_2 .

1. Compléter le tableau.

Volume V ₁ (mL)	20,0	20,0	20,0	20,0	20,0	20,0	20,0
Volume V ₂ (mL)	5,00	10,0	15,0	20,0	20,0	20,0	20,0
рН	4,00	4,33	4,51	4,64	4,76	4,95	5,26
$\frac{V_2}{V_1}$	0,250	0,500	0,750	1,00	1,33	2,00	4,00
$log \frac{V_2}{V_1}$	-0,60	-0,30	-0,13	0,00	0,13	0,30	0,60

2. Tracer le graphe représentant l'évolution du pH en fonction de $\log \frac{V_2}{V_1}$.

3. Commenter l'allure du graphe et proposer une équation pour la courbe obtenue.

La courbe obtenue est une droite d'équation pH = $a \log \frac{V_2}{V_1} + b$

Avec:

a: Coefficient directeur et b: ordonnée à l'origine = 4,64.

$$a = 1 \text{ d'où pH} = \log\left(\frac{V_2}{V_1}\right) + 4,64$$

4. Ecrire les équations de réaction de AH et A^- avec l'eau. Déterminer la relation liant le pH de la solution et le p K_a de ce couple.

$$AH + H_2O \rightleftharpoons A^- + H_3O^+$$

$$A^- + H_2O \rightleftharpoons AH + OH^-$$

$$K_a = \frac{[A^-][H_3O^+]}{[AH]}$$

$$\log K_a = \log \frac{[A^-]}{[AH]} + \log[H_3O^+] \Leftrightarrow -\log[H_3O^+] = \log \frac{[A^-]}{[AH]} - \log K_a \Leftrightarrow pH = \log \left(\frac{[A^-]}{[AH]}\right) + pK_a$$

5. On considère que les transformations mettant en jeu AH et A⁻ avec l'eau sont très limitées et ne modifient pas les concentrations en AH et A⁻. Montrer alors que pour chaque mélange :

$$\frac{[A^-]}{[AH]} = \frac{V_2}{V_1}$$

Comme on considère que les transformations mettant en jeu AH et A⁻ avec l'eau ne modifient pas les concentrations en AH et A⁻ et en posant :

$$C = c_1 + c_2$$
 on $a : [AH] = \frac{C. V_1}{V_{tot}}$ et $[A^-] = \frac{C. V_2}{V_{tot}}$

On en déduit :

$$\frac{[A^-]}{[AH]} = \frac{V_2}{V_1} \quad \text{et pH} = \log\left(\frac{V_2}{V_1}\right) + pK_a$$

6. Déduire du graphe la valeur du p $\rm K_a$ du couple $\rm CH_3COOH_{(aq)}/CH_3COO^-_{(aq)}$.

Par identification entre:

$$pH = log\left(\frac{V_2}{V_1}\right) + 4,64 \text{ et } pH = log\left(\frac{V_2}{V_1}\right) + pK_a$$

On en déduit que :

$$pK_a = 4,64$$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Terminale Physique - Chimie : Chimie Transformations par échange de protons Réactions d'échange de proton - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Réactions d'échange de proton - Terminale - Exercices à imprimer

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Terminale Physique Chimie : Chimie Transformations par échange de protons Acides et bases PDF à imprimer
- Exercices Terminale Physique Chimie : Chimie Transformations par échange de protons Solutions tampon PDF à imprimer

Besoin d'approfondir en : Terminale Physique - Chimie : Chimie Transformations par échange de protons Re

- <u>Cours Terminale Physique Chimie : Chimie Transformations par échange de protons Réactions</u> d'échange de proton
- <u>Vidéos pédagogiques Terminale Physique Chimie : Chimie Transformations par échange de</u> protons Réactions d'échange de proton