Pression dans un liquide - Correction

Exercice 01:

- 1. La valeur de la force pressante qu'exerce l'eau sur les parois d'un réservoir d'eau s'exprime en :
 - > Newton
 - > Pascal
 - ➤ Kilogramme

C'est avant tout une force, elle s'exprime en newton N, la pression en pascal Pa et la masse en kilogramme kg.

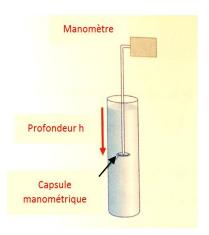
- 2. La pression de l'eau :
 - > Augmente avec la profondeur
 - ➤ Diminue avec la profondeur
 - > Ne varie pas avec la profondeur de la plongée
- 3. Un plongeur évolue dans de l'eau de masse volumique 1032 kg / m3. La pression atmosphérique est de $1,021 \times 10^5 \text{ Pa}$. Quelle est la pression de l'eau à 25 m de profondeur.
 - \geq 2.5 x 10⁵ Pa
 - > 3.5 x 10⁵ Pa
 - \triangleright 2,6 x 10⁵ Pa

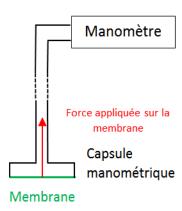
Dans l'eau, la pression augmente de 10 ⁴ Pa environ tous les mètres.

- 4. La pression atmosphérique :
 - > Augmente avec l'altitude
 - ➤ Diminue avec l'altitude
 - > A une variation aléatoire avec l'altitude

À faible altitude, la pression atmosphérique baisse environ de 100 Pa chaque fois que l'on s'élève de 8 mètres.

Exercice 02:


Pour mesurer la pression à une profondeur h dans un liquide, on immerge une capsule manométrique reliée à un manomètre par l'intermédiaire d'un tuyau souple.


Une capsule manométrique est constituée d'une membrane élastique. La force exercée sur cette membrane, d'aire S = 5,0 cm ², comprime le gaz contenu dans le tuyau souple et le manomètre affiche alors la valeur de la pression existante au point où se trouve la capsule.

Grace à ce dispositif, un élève réalise des mesures dans trois liquides différents :

Alcool, eau et glycérine.

Le dispositif expérimental :

Profondeur h (m)		0	0,30	0.60	0.90
Pression p (hPa)	Alcool	1 013	1 036	1 059	1 083
	Eau	1 013	1 042	1 072	1 101
	Glycérine	1 013	1 060	1 106	1 153

1. A quelle pression particulière correspond la valeur P_0 = 1 013 hPa mesurée à la profondeur zéro ? Expliquer.

La profondeur zéro correspond à la surface du liquide en contact avec l'air. La pression P_0 est donc la pression atmosphérique.

2. Quelle est la valeur de la force appliquée sur la membrane à la profondeur zéro ?

La force pressante exercée sur la membrane est :

$$F = p_0 S$$

$$p_0 = 1.013 \text{ hPa} = 1.013 \text{ x } 10^2 \text{Pa} = 1,013 \text{ x } 10^5 \text{ Pa}$$

$$S = 5 \text{ cm}^2 = 5.0 \text{ x } 10^{-4} \text{ m}^2$$

Application numérique :

$$F = p_0 S = 1,013 \times 10^5 \times 5,0 \times 10^{-4} = 51 N$$

- 3. Sans effectuer de calcul, quelles sont les premières conclusions qui peuvent être tirées :
 - ➤ De l'analyse des mesures de pression pour un liquide donné ?
 - De la comparaison des mesures entre les trois liquides, pour une profondeur donnée ?

Pour un liquide donné, la pression augmente avec la profondeur.

Pour une profondeur donnée, la pression dépend du liquide.

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Seconde - 2nde Physique - Chimie : La pratique du sport Plongée subaquatique et pression Pression dans un liquide - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Pression dans un liquide - 2nde - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Seconde 2nde Physique Chimie : La pratique du sport Plongée subaquatique et pression Dissolution d'un gaz PDF à imprimer
- Exercices Seconde 2nde Physique Chimie : La pratique du sport Plongée subaquatique et pression Les effets physiologiques de la plongée subaquatique PDF à imprimer

Besoin d'approfondir en : Seconde - 2nde Physique - Chimie : La pratique du sport Plongée subaquatique et

- Cours Seconde 2nde Physique Chimie : La pratique du sport Plongée subaquatique et pression Pression dans un liquide
- <u>Vidéos pédagogiques Seconde 2nde Physique Chimie : La pratique du sport Plongée</u> subaquatique et pression Pression dans un liquide