Opérations sur les fonctions - Correction

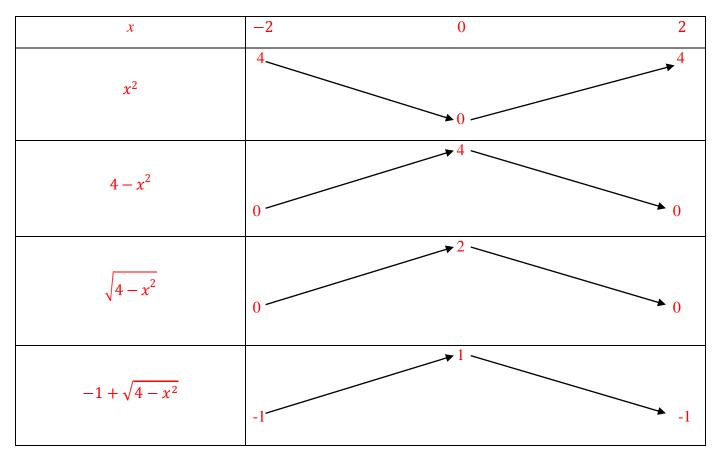
Exercice 01:

Soit la fonction f définie sur [-2; 2] par : $f(x) = -1 + \sqrt{4 - x^2}$

Première partie :

1. Etudier les variations de f et tracer sa représentation graphique C dans un repère orthonormé $(0; \vec{\imath}; \vec{\jmath})$

Pour étudier les variations de f, on applique les théorèmes donnant les variations d'une fonction.



2. Montrer que C est un demi-cercle de centre A (0; 1).

Pour tout point M(x; y) du plan :

$$y = -1 + \sqrt{4 - x^2} \Leftrightarrow y + 1 = \sqrt{4 - x^2} \Leftrightarrow \begin{cases} (y + 1)^2 = 4 - x^2 \\ y \ge -1 \end{cases} \Leftrightarrow \begin{cases} x^2 + (y + 1)^2 = 4 \\ y \ge -1 \end{cases} \Leftrightarrow \begin{cases} AM^2 = 4 \\ y \ge -1 \end{cases}$$
$$\Leftrightarrow \begin{cases} AM = 2 \\ y \ge -1 \end{cases}$$

A ayant pour coordonnées (0 ; -1), la courbe C est donc un demi-cercle de centre A et de rayon 2 tel que $y \ge -1$

3. Déterminer les abscisses des points d'intersection de C avec la droite $(0; \vec{t})$.

www.pass-education.fr

Les abscisses des points d'intersection de C avec la droite $(0; \vec{t})$ sont les solutions de l'équation :

$$-1 + \sqrt{4 - x^2} = 0 \Leftrightarrow \sqrt{4 - x^2} = 1 \Leftrightarrow 4 - x^2 = 1 \Leftrightarrow x^2 = 3 \Leftrightarrow x = \pm \sqrt{3}$$

Deuxième partie:

On considère la famille de fonction f_1 , f_2 associées à la fonction f définies par :

$$f_1(x) = |f(x)|$$

$$f_2(x) = f(x) + 2$$

A partir de la courbe C, tracer les courbes C_1 , C_2 et C_3 , représentant respectivement les fonctions f_1 , f_2 .

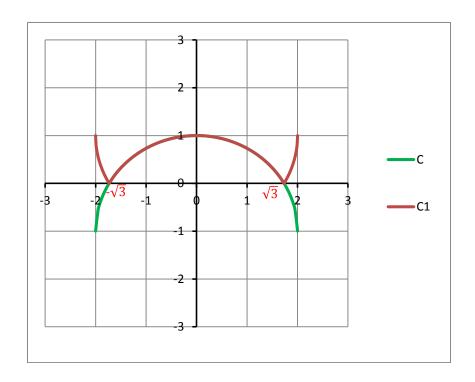
Les courbes C et C₁:

$$f_1(x) = |f(x)|$$

Si
$$-\sqrt{3} \le x \le \sqrt{3}$$
, le graphique nous montre que $f(x) \ge 0$ donc $f_1(x) = f(x)$

La partie de C_1 et C correspondantes sont confondues.

Si $-2 \le x \le -\sqrt{3}$ Ou $\sqrt{3} \le x \le 2$ le graphique nous montre que $f(x) \le 0$ donc $f_1(x) = -f(x)$ les parties de C et de C₁ correspondantes sont symétrique par rapport à l'axe des abscisses.



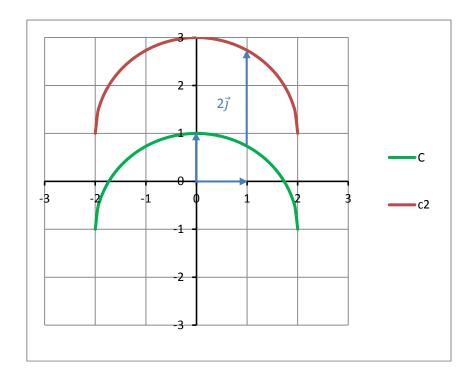
Les courbes C et C_2 :

$$f_2(x) = f(x) + 2$$

Considérons les points M(x;f(x)) et $M_2(x;f_2(x))$, ils ont même abscisse et $Y_{M2}-Y_{M}=2$

$$\overrightarrow{\mathrm{MM}_2} = O\vec{\imath} + 2O\vec{\jmath}$$

Donc M a pour image M_2 par translation de vecteur $2\vec{\jmath}$



Pass Education

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Mathématiques : Fonctions Fonctions - Généralités Opérations sur les fonctions - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Fonctions - Opérations - Première - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

• Exercices Première - 1ère Mathématiques : Fonctions Fonctions - Généralités Fonction croissante / décroissante - PDF à imprimer

Besoin d'approfondir en : Première - 1ère Mathématiques : Fonctions Fonctions - Généralités Opérations su

• <u>Cours Première - 1ère Mathématiques : Fonctions Fonctions - Généralités Opérations sur les fonctions</u>