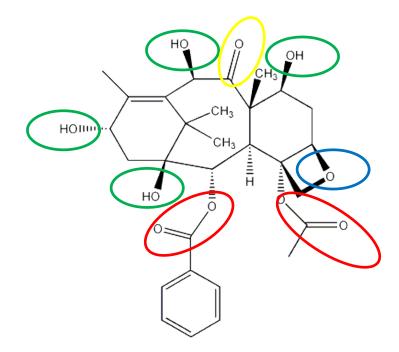
Molécules biologiquement actives - Correction

Exercice 01:

En 1962, on découvre que l'écorce d'un arbre, l'if du Pacifique, possède des propriétés anti-tumorales intéressantes. L'espèce responsable de cette activité est bientôt isolée, sa structure est déterminée : il s'agit du Taxol [®]. Les premiers essais cliniques sont concluants. Cependant, un problème se pose : 2 500 arbres sont nécessaires pour obtenir 1 g de Taxol [®]. Or l'if est un arbre à croissance lente...

Des travaux sur feuilles d'if sont alors lancés, d'où l'on extrait une espèce chimique moins active que le Taxol [®], mais ayant une structure proche : la 10-désacétulbaccatine III. A partir de cette molécule, on obtient par hémisynthèse le Taxol [®]. Le Taxol [®] est commercialisé pour traiter les cancers du sein et de l'ovaire.

10-désacétulbaccatine III


1. Pourquoi dit-on que la molécule de taxol [®] est complexe ?

La molécule de Taxol [®] est une grosse molécule comportant plusieurs groupes caractéristiques.

2. Entourer les groupes caractéristiques présents dans la molécule de 10-désacétulbaccatine III et les nommer.

On reconnaît quatre groupes hydroxyles (entourés en vert), un groupe étheroxyde (en bleu), deux groupes esters (en rouge) et un groupe bonyle (en jaune).

www.pass-education.fr

3. La molécule de Taxol [®] est-elle biologiquement active ?

Le Taxol [®] est une molécule qui interagit avec l'organisme puisqu'elle a des effets thérapeutiques : elle est biologiquement active

4. Pourquoi est-il préférable d'utiliser les feuilles de l'if plutôt que l'écorce ?

L'utilisation de l'écorce provoque la mort de l'if. Les feuilles présentent l'avantage d'être une source renouvelable et quasi inépuisable.

5. La synthèse du Taxol [®] à partir du 10-désacétulbaccatine III est une hémisynthèse. Justifier.

La synthèse de Taxol [®] est réalisée à partir d'un composé naturel possédant déjà une partie de la molécule visée : il s'agit bien d'une hémisynthèse.

6. Pour obtenir une forme administrable à l'homme, il faut ajouter des excipients au principe actif. Qu'appelle-t-on excipient ?

Un excipient est une espèce chimique dépourvue d'activité thérapeutique qui est incorporée aux médicaments pour faciliter son administration, son absorption par l'organisme, améliorer sa conservation, modifier son goût ou sa couleur.

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Physique - Chimie : Défis du XXIe siècle Nouveaux matériaux et molécules biologiquement actives Molécules biologiquement actives - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Molécules biologiquement actives - Première - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Physique Chimie : Défis du XXIe siècle Nouveaux matériaux et molécules biologiquement actives Matériaux amorphe ou cristallisés PDF à imprimer
- Exercices Première 1ère Physique Chimie : Défis du XXIe siècle Nouveaux matériaux et molécules biologiquement actives Nanomatériaux PDF à imprimer
- Exercices Première 1ère Physique Chimie : Défis du XXIe siècle Nouveaux matériaux et molécules biologiquement actives Polymères PDF à imprimer

Besoin d'approfondir en : Première - 1ère Physique - Chimie : Défis du XXIe siècle Nouveaux matériaux et m

- <u>Cours Première 1ère Physique Chimie : Défis du XXIe siècle Nouveaux matériaux et molécules</u> biologiquement actives Molécules biologiquement actives
- <u>Vidéos pédagogiques Première 1ère Physique Chimie : Défis du XXIe siècle Nouveaux matériaux et molécules biologiquement actives Molécules biologiquement actives</u>