Limite et comparaison - Correction

Exercice 01 : Convergence

Etudier la convergence de chaque suite dont le terme général est donné ci-dessous.

1.
$$u_n = n^3 + (-1)^n$$

Pour tout $n \in \mathbb{N}$, $-1 \le (-1)^n \le 1$ donc : $n^3 - 1 \le n^3 + (-1)^n \le n^3 + 1$

d'où:
$$n^3 - 1 \le u_n$$
. Or $\lim_{n \to +\infty} (n^3 - 1) = +\infty$, donc $\lim_{n \to +\infty} u_n = +\infty$.

La suite (u_n) diverge et sa limite est $+\infty$.

2.
$$v_n = 4 - 2^n$$

Comme 2 > 1,
$$\lim_{n \to +\infty} 2^n = +\infty$$
, donc $\lim_{n \to +\infty} v_n = -\infty$.

La suite (v_n) diverge et sa limite est $-\infty$.

3.
$$w_n = \frac{5^n + 1^n}{3^n}$$

Pour tout
$$n \in \mathbb{N}$$
, $w_n = \frac{5^n + 1^n}{3^n} = \frac{5^n}{3^n} + \frac{1^n}{3^n} = \left(\frac{5}{3}\right)^n + \left(\frac{1}{3}\right)^n$

Comme
$$\frac{5}{3} > 1$$
, $\lim_{n \to +\infty} \left(\frac{5}{3}\right)^n = +\infty$, et Comme $-1 < \frac{1}{3} < 1$, $\lim_{n \to +\infty} \left(\frac{1}{3}\right)^n = 0$.

donc:
$$\lim_{n\to+\infty} w_n = +\infty$$
.

La suite (w_n) diverge et sa limite est $+\infty$.

$$4. x_n = \sin(n) - 3n$$

Pour tout $n \in \mathbb{N}$, $-1 \le \sin(n) \le 1$ donc $-1 - 3n \le \sin(n) - 3n \le 1 - 3n$

d'où:
$$x_n \le 1 - 3n$$
. Or $\lim_{n \to +\infty} (1 - 3n) = -\infty$, donc $\lim_{n \to +\infty} x_n = -\infty$.

La suite (x_n) diverge et sa limite est $-\infty$.

5.
$$y_n = \frac{(-1)^n + 2n}{3n}, n \ge 1$$

Pour tout $n \ge 1$, $-1 \le (-1)^n \le 1$ donc $-1 + 2n \le (-1)^n + 2n \le 1 + 2n$

comme
$$3n > 0$$
, d'où: $\frac{-1+2n}{3n} \le \frac{(-1)^n + 2n}{3n} \le \frac{1+2n}{3n}$

c'est à dire :
$$\frac{-1}{3n} + \frac{2}{3} \le y_n \le \frac{1}{3n} + \frac{2}{3}$$

www.pass-education.fr

Comme
$$\lim_{n \to +\infty} \left(\frac{-1}{3n} + \frac{2}{3} \right) = \lim_{n \to +\infty} \left(\frac{1}{3n} + \frac{2}{3} \right) = \frac{1}{2}$$
, donc $\lim_{n \to +\infty} y_n = \frac{1}{2}$ (théorème d'encadrement)

La suite (y_n) converge vers $\frac{1}{2}$.

Exercice 02 : Démonstrations

Soit (u_n) , une suite définie sur $\mathbb N$ dont aucun terme n'est nul et la suite (v_n) , définie sur $\mathbb N$ par :

$$v_n = \frac{-3}{u_n}$$

Pour chacune des propositions ci-dessous, indiquer si elle est vraie ou fausse et proposer une démonstration.

1. Si (u_n) est convergente, alors (v_n) est convergente.

Faux : si $\lim_{n \to +\infty} u_n = 0$. alors v_n est divergente.

Par exemple:

$$u_n = \frac{1}{2n+1}$$
, alors $v_n = \frac{-3}{\frac{1}{2n+1}} = -3(2n+1) = -6n-3$ et $\lim_{n \to +\infty} v = -\infty$.

2. Si (u_n) est minorée par 3, alors (v_n) est minorée par -1.

Vrai : si (u_n) est minorée par 3, alors pour tout n, $u_n \le 3$. Donc $\frac{1}{u_n} \ge \frac{1}{3}$

d'où :
$$\frac{-3}{u_n} \le -1$$
, donc : $v_n \le -1$ donc (v_n) est minorée par -1

3. Si (u_n) est décroissante, alors (v_n) est décroissante.

Faux : u_n ne garde pas un signe constant.

Par exemple:

 $u_n = -2 + 9$, (u_n) est décroissante et (v_n) n'est décroissante qu'à partir du rang 5.

4. Si (u_n) est divergente, alors (v_n) est converge vers 0.

Faux, par exemple:

 $u_n = (-1)^n$ est divergente, alors $v_n = -3(-1)^{-n}$ donc (v_n) ne converge pas.

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Terminale Mathématiques : Les suites Limite d'une suite - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Comparaison - Limite - Terminale - Exercices corrigés Terminale

Découvrez d'autres exercices en : Terminale Mathématiques : Les suites Limite d'une suite

- Opérations sur les limites Terminale Exercices corrigés
- <u>Limites de suites Terminale Exercices à imprimer</u>

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Terminale Mathématiques : Les suites Sens de variation d'une suite PDF à imprimer
- Exercices Terminale Mathématiques : Les suites Suite majorée minorée PDF à imprimer
- Exercices Terminale Mathématiques : Les suites Suite récurrente PDF à imprimer
- Exercices Terminale Mathématiques : Les suites Suites géométriques PDF à imprimer

Besoin d'approfondir en : Terminale Mathématiques : Les suites Limite d'une suite

• Cours Terminale Mathématiques : Les suites Limite d'une suite