# Les ions monoatomiques - Correction

# Exercice 01 : Structure électronique d'un ion

En justifiant, donner la structure électronique des ions suivants :

- a.  ${}^{39}_{19}K^+$  Cet ion de potassium possède 19 protons et puisqu'il est positif (1 fois), il possède un électron en moins soit 18 électrons. D'où la structure électronique suivante :  $(K)^2(L)^8(M)^8$ .
- b.  ${}^{19}_{9}F^{-}$  Cet ion de fluorure possède 9 protons et puisqu'il est négatif (1 fois), il possède un électron en plus soit 10 électrons. D'où la structure électronique suivante :  $(K)^{2}(L)^{8}$ .
- c.  ${}^{16}_{8}O^{2-}$  Cet ion d'oxygène possède 8 protons et puisqu'il est négatif (2 fois), il possède deux électrons en plus soit 10 électrons. D'où la structure électronique suivante :  $(K)^{2}(L)^{8}$ .

### d. Exercice 02 : Des ions

a. Quelles sont les structures électroniques de l'atome de sodium (Na : Z = 11), de chlore (Cl : Z = 17), d'argon (Ar : Z = 18) et de néon (Ne : Z = 10).

$$(Na : Z = 11) : (K)^{2}(L)^{8}(M)^{1}$$
;  $(Cl : Z = 17) : (K)^{2}(L)^{8}(M)^{7}$ 

$$(Ar : Z = 18) : (K)^{2}(L)^{8}(M)^{8}$$
;  $(Ne : Z = 10) : (K)^{2}(L)^{8}$ 

b. Quel cation stable peut engendrer l'atome de sodium?

Le sodium peut perdre un électron pour satisfaire la règle de l'octet et donner ainsi un cation stable Na<sup>+</sup>

c. Quel anion stable peut engendrer l'atome de chlore?

Le chlore peut gagner un électron pour satisfaire la règle de l'octet et donner ainsi un anion stable Cl-

d. Donner les structures électroniques de ces ions et les comparer à celle d'argon ou de néon.

La structure électronique de Na<sup>+</sup> est (K)<sup>2</sup>(L)<sup>8</sup>

La structure électronique de Cl<sup>-</sup> est (K)<sup>2</sup>(L)<sup>8</sup>(M)<sup>8</sup>

Le Na<sup>+</sup> adopte la configuration du gaz rare le plus proche, c'est-à-dire le néon, il se procure ainsi une grande stabilité.

Le Cl<sup>-</sup> adopte la configuration du gaz rare le plus proche, c'est-à-dire l'argon, il se procure ainsi une grande stabilité.

#### Exercice 03: Formation d'ions

a. Quel ion est susceptible de former l'atome 17Cl?

La configuration électronique de <sub>17</sub>Cl est (K)<sup>2</sup>(L)<sup>8</sup>(M)<sup>7</sup>. Le chlore respecte la règle de l'octet, donc il va gagner un électron qui lui permettra d'avoir 8 électrons sur sa couche externe.

L'atome de chlore qui gagne un électron va donc former l'ion chlorure Cl<sup>-</sup>.

b. Quel ion est susceptible de former l'atome 12Mg?

La configuration électronique de 12Mg est (K)2(L)8(M)2. Le magnésium respecte la règle de l'octet, donc il va perdre 2 électrons qui lui permettront d'avoir 8 électrons sur sa couche externe.

L'atome de magnésium qui perd 2 électrons va donc former l'ion Mg<sup>2+</sup>.

# Exercice 04: Produit de réhydratation

Un produit de réhydratation administré en perfusion mentionne sur son étiquette la présence des éléments suivants : Na<sup>+</sup>, Cl<sup>-</sup>, Ca<sup>2+</sup> et Mg<sup>2+</sup>.

a. Donner le nom de ces ions.

Na<sup>+</sup>: ion sodium,

Cl<sup>-</sup>: ion chlorure, Ca<sup>2+</sup>: ion calcium, Mg<sup>2+</sup>: ion magnesium.

b. Compléter le tableau.

| Elément | Ne | Na | Mg | Al | Si | P  | S  | Cl | Ar | K  | Ca |
|---------|----|----|----|----|----|----|----|----|----|----|----|
| Z       | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |

| Atome                                     | Ca                  | Na                 | Mg                  | Cl                  |  |
|-------------------------------------------|---------------------|--------------------|---------------------|---------------------|--|
| Numéro atomique (Z)                       | 20                  | 11                 | 12                  | 17                  |  |
| Ion monoatomique                          | Ca <sup>2+</sup>    | Na <sup>+</sup>    | $Mg^{2+}$           | Cl <sup>-</sup>     |  |
| Combien d'électrons perdus ou gagnés      | Perd 2<br>électrons | Perd 1<br>électron | Perd 2<br>électrons | Gagne 1<br>électron |  |
| Structure électronique de l'ion           | $(K)^2(L)^8(M)^8$   | $(K)^2(L)^8$       | $(K)^2(L)^8$        | $(K)^2(L)^8(M)^8$   |  |
| Nombre d'électrons sur la dernière couche | M 8 électrons       | L 8<br>électrons   | L 8<br>électrons    | M 8 électrons       |  |

c. Pour chaque ion, comparer le nombre d'électrons sur la couche externe. Conclure.

Ils ont tous une couche externe à 8 électrons, soit en octet. Ils ont tous la structure électronique du gaz noble la plus proche : néon pour Na<sup>+</sup> et Mg<sup>2+</sup> et l'argon pour Ca<sup>2+</sup> et Cl<sup>-</sup>.

Donc ce sont des ions stables.



### Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Seconde - 2nde Physique - Chimie : L'univers Pourquoi les atomes forment-ils des ions Les ions monoatomiques - PDF à imprimer

### Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Ions monoatomiques - 2nde - Exercices corrigés

## Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Seconde 2nde Physique Chimie : L'univers Pourquoi les atomes forment-ils des ions Electrons et couches électroniques PDF à imprimer
- Exercices Seconde 2nde Physique Chimie : L'univers Pourquoi les atomes forment-ils des ions Règles du duet et de l'octet PDF à imprimer

# Besoin d'approfondir en : Seconde - 2nde Physique - Chimie : L'univers Pourquoi les atomes forment-ils des

- <u>Cours Seconde 2nde Physique Chimie : L'univers Pourquoi les atomes forment-ils des ions Les</u> ions monoatomiques
- <u>Vidéos pédagogiques Seconde 2nde Physique Chimie : L'univers Pourquoi les atomes forment-ils</u> des ions Les ions monoatomiques