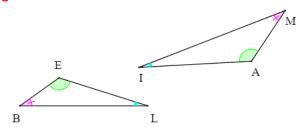
Triangles semblables

Correction

Exercices

1. Expliquer pourquoi les triangles BEL et AMI sont semblables.

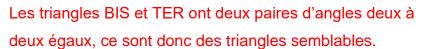

BEL et AMI sont semblables car leurs angles sont deux à deux de même mesure.

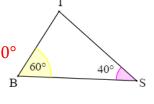
2. Compléter :

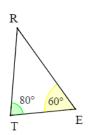
$$\widehat{BEL} = \widehat{MAI}$$

L'homologue de \hat{E} est \hat{A} .

L'homologue de [BE] est [MA].


2* Expliquer pourquoi les triangles BIS et TER sont semblables.

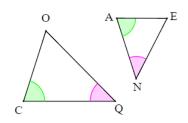

La somme des angles d'un triangle est égale à 180°.


Dans le triangle BEL, on a :

$$\widehat{BIS} = 180 - (\widehat{IBS} + \widehat{ISB}) = 180 - (60 + 40) = 180 - 100 = 80^{\circ}$$

Donc $\widehat{BIS} = \widehat{RTE}$ et $\widehat{IBS} = \widehat{RET}$.

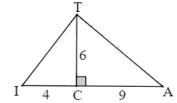
3* RIZ et BLE sont deux triangles tels que : RI = 6 cm ; RZ = 4 cm et IZ = 3 cm ; BL = 12 cm ; BE = 18 cm ; LE = 9 cm.


Ces triangles sont-ils semblables ? Si oui, donne le coefficient de proportionnalité.

Il faut associer correctement les côtés :

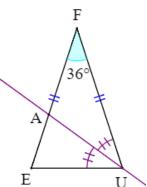
- les plus grands : BE = $18 = 3 \times 6 = 3 \times RI$;
- les plus petits : LE = 9 = $3 \times 3 = 3 \times IZ$; et BL = $12 = 3 \times 4 = 3 \times RZ$

RIZ et BLE ont les longueurs de leurs côtés deux à deux proportionnelles, avec un coefficient de proportionnalité de 3. Ce sont donc des triangles semblables.


4** Les triangles COQ et ANE sont semblables, compléter ces égalités de rapport de longueurs : $\frac{CQ}{AN} = \frac{CO}{AE} = \frac{OQ}{EN}$

5** On considère la figure ci-contre. Expliquer pourquoi les triangles TIC et TAC sont semblables.

$$\widehat{TCI} = \widehat{TCA} = 90^{\circ}$$


Dans TIC : IC = 4 et TC = 6
Dans TAC : TC = 6 et CA = 9
$$\times$$
 1,5 $\frac{\text{TC}}{\text{IC}} = \frac{\text{CA}}{\text{TC}} = 1,5$

Les triangles TIC et TAC ont un angle de même mesure compris entre 2 côtés aux longueurs proportionnelles, donc ils sont semblables.

- 6** FEU est un triangle isocèle en F tel que $\widehat{EFU} = 36^{\circ}$. La bissectrice de l'angle \widehat{FUE} coupe [FE] en A. 1. Calculer la mesure des angles \widehat{FEU} et \widehat{FUE} .
- FEU est un triangle isocèle en F, donc ses angles à la base sont égaux ; et la somme des angles d'un triangle est égale à 180°, donc :

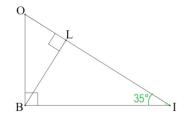
$$\widehat{FEU} = \widehat{FUE} = (180 - 36) : 2 = 72^{\circ}$$

2. Démontrer que les triangles FEU et EAU sont semblables.

(UA) est la bissectrice de
$$\widehat{FUE}$$
 donc $\widehat{FUA} = \widehat{AUE} = \widehat{FUE} : 2 = 72 : 2 = 36^{\circ}$.

Dans le triangle EAU :
$$\widehat{EUA} = 36^{\circ} \widehat{AEU} = 72^{\circ}$$

Dans
$$FEU : \widehat{EFU} = 36^{\circ} \widehat{FEU} = \widehat{FUE} = 72^{\circ}$$


Les triangles FEU et EAU ont deux paires d'angles deux à deux égaux, ce sont donc des triangles semblables.

- 7 ** BIO est un triangle rectangle en B. [BL] est la hauteur issue de B.
- 1. Explique pourquoi BIO et BIL sont semblables.

$$\widehat{BIO} = \widehat{BIL} = 35^{\circ}$$
 ce sont les mêmes angles.

$$\widehat{OBI} = \widehat{BLI} = 90^{\circ}$$
 ce sont des angles droits.

Les triangles BIO et BIL ont donc deux paires d'angles égaux, ce sont des triangles semblables.

2. Explique pourquoi BIO et BOL sont semblables.

 $\widehat{BOI} = \widehat{BOL}$, ce sont les mêmes angles. $\widehat{OBI} = \widehat{BLO} = 90^\circ$, ce sont des angles droits. Les triangles BIO et BOL ont donc deux paires d'angles égaux, ce sont des triangles semblables.

3. Que dire des triangles BIL et BOL?

BIO et BIL sont semblables, leurs angles sont égaux ; BIO et BOL sont semblables, leurs angles sont égaux. Donc BIL et BOL ont des angles deux à deux égaux, ce sont des triangles semblables également.

3*** NEZ est un triangle tel que : NE = 8 cm ; EZ = 10 cm et NZ = 14 cm.

PIF est un triangle semblable à NEZ, avec PI = 11,2 cm.

Quelles peuvent être les dimensions des deux autres côtés ?

Il faut envisager les différentes possibilités de côtés homologues :

Si [PI] est le côté homologue à [NE] : 11,2:8=1,4; il y a agrandissement de coefficient 1,4.

 $10 \times 1.4 = 14$ et $14 \times 1.4 = 19.6$. Les autres côtés mesurent **14 cm et 19.6 cm**.

Si [PI] est le côté homologue à [EZ] : 11,2:10=1,12 ; il y a agrandissement de coefficient 1,12.

 $8 \times 1,12 = 8,96$ et $14 \times 1,12 = 15,68$. Les autres côtés mesurent **8,96 cm et 15,68 cm**.

Si [PI] est le côté homologue à [NZ] : 11,2 : 14 = 0,8 ; il y a réduction de coefficient 0,8.

 $8 \times 0.8 = 6.4$ et $10 \times 0.8 = 8$. Les autres côtés mesurent **6.4 cm et 8 cm**.

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices 3ème Mathématiques : Géométrie Géométrie plane Le triangle - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Triangles semblables - 3ème - Exercices avec les corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices 3ème Mathématiques : Géométrie Géométrie plane Théorème de Pythagore et sa réciproque PDF à imprimer
- Exercices 3ème Mathématiques : Géométrie Géométrie plane Théorème de Thalès et sa réciproque PDF à imprimer

Besoin d'approfondir en : 3ème Mathématiques : Géométrie Géométrie plane Le triangle

- Cours 3ème Mathématiques : Géométrie Géométrie plane Le triangle
- Evaluations 3ème Mathématiques : Géométrie Géométrie plane Le triangle
- Séquence / Fiche de prep 3ème Mathématiques : Géométrie Géométrie plane Le triangle
- Cartes mentales 3ème Mathématiques : Géométrie Géométrie plane Le triangle