
Produit scalaire - Correction

Exercice 01:

Soit un losange KLMN de 6 cm de côté tel que $(\overrightarrow{KL}, \overrightarrow{AN}) = \frac{\pi}{6}$

1. Calculer les produits scalaires : \overrightarrow{KL} . \overrightarrow{KN} et \overrightarrow{KL} . \overrightarrow{MN}

$$\overrightarrow{\text{KL}}.\overrightarrow{\text{KN}} = \text{KL}.\text{KN}.\cos(\text{LKN}) = 6 \text{ X } 6 \text{ X}\cos\left(\frac{\pi}{6}\right) = 36 \text{ X } \frac{\sqrt{3}}{2} = 18\sqrt{3}$$

KLMN est un losange, donc un parallélogramme ; on en déduit que $\overrightarrow{MN} = \overrightarrow{LK} = -\overrightarrow{KL}$

$$\overrightarrow{KL}$$
. $\overrightarrow{MN} = \overrightarrow{KL}$. $(-\overrightarrow{KL}) = -KL^2 = -36$

2. Calculer les produits scalaires : \overrightarrow{KL} . \overrightarrow{KM} et \overrightarrow{KM} . \overrightarrow{LN}

$$\overrightarrow{KL}.\overrightarrow{KM} = \overrightarrow{KL}.\big(\overrightarrow{KN} + \overrightarrow{NM}\big) = \overrightarrow{KL}.\overrightarrow{KN} + \overrightarrow{KL}.\overrightarrow{NM} = \overrightarrow{KL}.\overrightarrow{KN} + \overrightarrow{KL}.\big(-\overrightarrow{MN}\big) = \overrightarrow{KL}.\overrightarrow{KN} - \overrightarrow{KL}.\overrightarrow{MN}$$

$$\overrightarrow{KL} \cdot \overrightarrow{KM} = 18\sqrt{3} - (-36) = 18\sqrt{3} + 36$$

Exercice 02:

Le plan est muni d'un repère orthonormé $(0; \vec{i}, \vec{j})$.

On considère les points A(3; 0), B(6; 3), C(1; 4)

1. Calculer le produit scalaire \overrightarrow{AB} . \overrightarrow{AC} .

$$A(3; 0), B(6; 3), C(1; 4) donc \overrightarrow{AB}(3; 3) et \overrightarrow{AC}(-2; 4)$$

$$\overrightarrow{AB}$$
. $\overrightarrow{AC} = 3 \times (-2) + 3 \times 4 = -6 + 12 = 6$

2. Calculer les distances AB et AC.

$$\overrightarrow{AB}(3;3)$$
 donc $AB = \sqrt{3^2 + 3^2} = \sqrt{18} = 3\sqrt{2}$

www.pass-education.fr

$$\overrightarrow{AC}(-2; 4)$$
donc $AC = \sqrt{(-2)^2 + 4^2} = \sqrt{20} = 2\sqrt{5}$

3. Déterminer une valeur approchée en degrés, à 0.1 près, de l'angle BÂC

En utilisant la formule \overrightarrow{AB} . $\overrightarrow{AC} = \overrightarrow{AB} \times \overrightarrow{AC} \times \cos(\overrightarrow{BAC})$ on obtient

$$\cos(BAC) = \frac{\overrightarrow{AB}.\overrightarrow{AC}}{AB \times AC} = \frac{6}{3\sqrt{2} \times 2\sqrt{5}} = \frac{1}{\sqrt{10}}$$

Avec la calculatrice, une valeur approchée en degrés, à $0.1~{\rm prés}$, de $\widehat{\rm BAC}$ est 71.6°

4. Calculer le produit scalaire \overrightarrow{OB} . \overrightarrow{AC} . Que peut-on en déduire ?

$$\overrightarrow{OB}(6;3)$$
 et $\overrightarrow{AC}(-2;4)$, donc \overrightarrow{OB} . $\overrightarrow{AC}=6$ X $(-2)+3$ X $4=0$

On en déduit que les vecteurs \overrightarrow{OB} et \overrightarrow{AC} sont orthogonaux.

Exercice 03:

Le plan est muni d'un repère orthonormé($0; \vec{i}, \vec{j}$).

On considère les vecteurs $\vec{u}(3;4)$ et $\vec{v}(0;5)$

1. Calculer \vec{u} . \vec{v}

$$\vec{u}(3;4)$$
et $\vec{v}(0;5)$ donc $\vec{u}.\vec{v}=3 \times 0 + 4 \times 5 = 20$

2. Calculer les normes des vecteurs \vec{u} et \vec{v}

$$\|\vec{u}\|^2 = 3^2 + 4^2 = 9 + 20 = 29$$
 donc $\|\vec{u}\| = \sqrt{29}$

$$\|\vec{v}\|^2 = 0^2 + 5^2 = 0 + 25 = 25$$
 donc $\|\vec{v}\| = \sqrt{25} = 5$

3. En déduire la norme du vecteur $\vec{u} + \vec{v}$

On a:

$$(\vec{u} + \vec{v})^2 = \vec{u}^2 + \vec{v}^2 + 2\vec{u}\vec{v}$$
 donc $(\vec{u} + \vec{v})^2 = 29 + 25 + 2 \times 20 = 94$

D'où:

$$\|\vec{u} + \vec{v}\| = \sqrt{94}$$

4. Calculer \vec{u} . $(\vec{u} + \vec{v})$:

$$\|\vec{u}\| = \sqrt{29}$$
 , $\|\vec{v}\| = \sqrt{25} = 5$ et \vec{u} . $\vec{v} = 20$

$$\vec{u} \cdot (\vec{u} + \vec{v}) = \vec{u}^2 + \vec{u}\vec{v} = 29 + 20 = 49$$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Mathématiques : Géométrie Géométrie plane - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Produit scalaire dans le plan - Première - Exercices corrigés

Découvrez d'autres exercices en : Première - 1ère Mathématiques : Géométrie Géométrie plane

- Equation cartésienne d'une droite Première Exercices à imprimer
- Produit scalaire Première Exercices corrigés Application
- Vecteurs colinéaires Première Exercices corrigés
- Equation de droites et cercles Vecteur normal à une droite Première Exercices
- Vecteurs Première Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Mathématiques : Géométrie Géométrie plane Equation cartésienne d'une droite PDF à imprimer
- Exercices Première 1ère Mathématiques : Géométrie Géométrie plane Produit scalaire PDF à imprimer
 - Exercices Première 1ère Mathématiques : Géométrie Géométrie plane Vecteurs PDF à imprimer
- Exercices Première 1ère Mathématiques : Géométrie Géométrie plane Vecteurs colinéaires PDF à imprimer

Besoin d'approfondir en : Première - 1ère Mathématiques : Géométrie Géométrie plane

• Cours Première - 1ère Mathématiques : Géométrie Géométrie plane