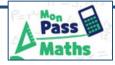
Fonctions affines

Je révise mon brevet pas à pas.



Correction

Prérequis : Généralités sur les fonctions

- ► Je sais calculer l'image d'un nombre par une fonction.
- ▶ Je sais représenter graphiquement une fonction : à un couple (antécédent ; image) correspond un point du graphe (abscisse ; ordonnée).

Fonctions affines

Je sais reconnaitre et utiliser une fonction affine

Une fonction f est **affine** si son expression algébrique est de la forme :

$$f(x) = ax + b$$

avec a appelé le coefficient directeur et b l'ordonnée à l'origine

<u>Remarque</u>: si on a l'ordonnée à l'origine égale à 0 (b=0) on retrouve l'expression d'une fonction **linéaire**. Ainsi une fonction linéaire est un **cas particulier** de fonction affine, ou une fonction affine est une **généralisation** d'une fonction linéaire!

Exemple : Une piscine propose un abonnement à 7 € donnant droit à un ticket d'entrée à 4 € l'unité.

On note n le nombre d'entrées, et le prix à payer pour n entrées se modélise par la fonction f définie par : f(n) = 7 + 4n.

Il s'agit d'une fonction affine avec a = 4 et b = 7.

On peut renseigner des prix dans un tableau de valeurs :

Nombre d'entrées	3	5	10
Prix en €	19	27	47

Attention: ici le prix n'est **PAS proportionnel** au nombre d'entrées (il ne s'agit pas d'une fonction linéaire). Ainsi je ne **DOIS PAS** utiliser un produit en croix pour compléter le tableau! Je dois nécessairement utiliser la fonction : par exemple $f(3) = 7 + 4 \times 3 = 19$.

Complète le tableau suivant, en cochant pour chaque fonction s'il s'agit d'une fonction affine, linéaire, les 2. Précise lorsque cela est pertinent les valeurs de a et/ou b.

Expression de f	Est-elle linéaire ?	Est-elle affine ?	a =	b =
f(x) = 6x - 3	Non	Oui	6	-3
f(x) = -4.5x	Oui	Oui	-4,5	0
$f(x) = 2x^2 + 1$	Non	Non		
f(x) = 3,2(x+2)	Non	Oui	3,2	6,4
$f(x) = 2x^2 + 1$	Non	Non		
$f(x) = \frac{2}{3} - \frac{3}{8}x$	Non	Oui	$-\frac{3}{8}$	$\frac{2}{3}$

Voici un programme de calcul :

- a. Choisir un nombre
- b. Ajouter 4
- c. Le multiplier par 2,5
- d. Ajouter le triple du nombre de départ
- 1. Qu'obtient-on en appliquant le programme avec -10 pour nombre de départ ?

On obtient successivement:

-10 / -10 + 4 = -6 / -6
$$\times$$
 (2,5) = -15 / -15 + 3 \times (-10) = -45. On obtient finalement -45.

2. Exprime le résultat en fonction du nombre de départ par une fonction f. Celle-ci est-elle affine? Si oui précise ses éléments caractéristiques.

On utilise la fonction f définie par : $f(x) = (x + 4) \times 2.5 + 3x = 2.5x + 10 + 3x = 5.5x + 10$. La fonction f est affine car de la forme f(x) = ax + b. Son coefficient directeur vaut 5,5 et son ordonnée à l'origine 10.

3. Quel sera le résultat du programme si on l'utilise avec 6 ? Avec -0,5 ?

On calcule $f(6) = 5.5 \times 6 + 10 = 43$. Avec 6 le résultat sera 43. On calcule $f(-0.5) = 5.5 \times (-0.5) + 10 = 7.25$. Avec -0.5 le résultat sera 7.25.

- Killian achète des légumes chez le primeur. Il a déjà dans son panier des courgettes pour un prix de 4,6 €. Il achète ensuite des tomates à 3,2 € le kilo.
- 1. Modélise le prix qu'il va payer en fonction de la masse de tomates achetée par une fonction. Précise si celle-ci est affine ou non.

Notons x la masse de tomates en kilo.

On a alors : f(x) = 3.2x + 4.6.

Cette fonction est affine avec a = 3.2 et b = 4.6.

2. Le prix à payer est-il proportionnel à la masse de tomate ? Justifie.

Le prix à payer en fonction de la masse de tomate est modélisé par une fonction affine qui n'est pas linéaire. Il ne s'agit donc pas d'une situation de proportionnalité!

3. Quel sera le prix s'il achète 2,5 kilos de tomates ? Et 5 kilos ?

On calcule $f(2,5) = 3.2 \times 2.5 + 4.6 = 12.6$. Il paierait dans ce cas 12.6 €. On calcule $f(5) = 3.2 \times 5 + 4.6 = 20.6$. Il paierait dans ce cas 20.6 €.

4. Vérifie à l'aide de la question précédente qu'il n'y a effectivement pas proportionnalité.

D'après la question précédente, en achetant 2 fois plus de tomates (5 kilo contre 2,5 kilo) on ne paie pas 2 fois plus cher (car $12,6 \times 2 \neq 20,6$). On peut aussi calculer : $\frac{12,6}{2,5} \neq \frac{20,6}{5}$.

Représentation graphique.

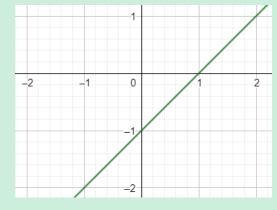
Représenter graphiquement une fonction affine

Le graphe d'une fonction affine est une **droite** (qui ne passe pas forcément par l'origine sauf si c'est une fonction linéaire).

> Je lis le graphe d'une fonction affine :

- 1) La droite « monte » si a > 0 et « descend » si a < 0.
- ② La droite passe par le point **(0 ; b)**. Le nombre b représente donc l'ordonnée du point d'abscisse 0 (l'ordonnée à l'origine).

Exemple: Pour la fonction représentée ci-contre : a > 0 et b = -1 (la droite passe par le point (0; -1)).



> Je trace le graphe d'une fonction affine :

- 1 Je calcule les coordonnées d'un point (d'abscisse non nulle).
- ② Je place le point précédent ainsi que le point (0 ; b).
- 3 Je trace la droite passe par ces 2 points.

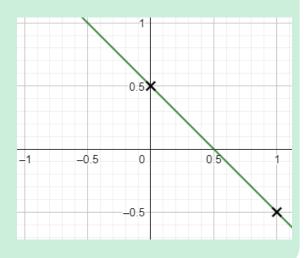
 $\underline{\mathsf{Exemple}}$: Soit f la fonction définie par :

$$f(x) = -x + 0.5.$$

Je calcule f(1) = -1 + 0.5 = -0.5.

On a b = 0.5.

La droite passe par les points (1 ; -0,5) et (0 ; 0,5).



Voici les graphes de 3 fonctions.

1. Pour chacune d'entre elles, justifie si elle est affine.

Les graphes de f et h sont des droites : il s'agit donc de fonctions affines.

Le graphe de g n'est pas une droite : ce n'est pas une fonction affine.

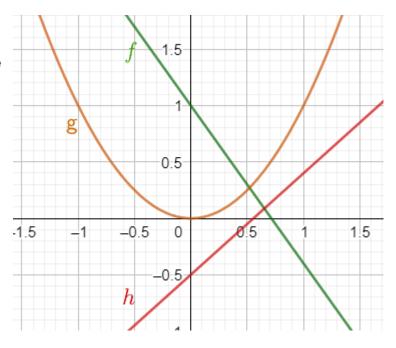
2. Donne le signe du coefficient directeur et l'ordonnée à l'origine des fonctions affines.

Pour f: a est négatif car la droite « descend ».

Puisqu'elle passe par le point (0; 1) on a b = 1.

Pour h: a est positif car la droite « monte ».

Puisqu'elle passe par le point (0; -0.5) on a b = -0.5.



Un opérateur propose un forfait incluant la location d'une box en plus du prix à payer, dépendant du nombre de gigas consommés.

Le prix total en fonction du nombre de gigas est représenté ci-contre.

1. La fonction f est-elle affine ? Si oui précise ses caractéristiques.

La fonction est affine car son graphe est une

droite. On a ici a > 0 car la droite « monte » et puisqu'elle passe par le point (0; 6) on a b = 6.

10

2. Quel est le prix de la location de la box ?

Le prix de location correspond au prix à payer même si l'on consomme 0 giga (coût fixe). On lit ici qu'il s'agit de 6 € (il s'agit en fait de l'ordonnée à l'origine !).

3. Quel est le prix total pour une consommation de 10 gigas ? de 20 gigas ?

Pour 10 gigas on lit que le coût est de 8 €, et pour 20 gigas il est de 10 €.

Voici une figure composée de 2 rectangles ABCD et CDEF.

1. Modélise l'aire de la figure en fonction de la longueur \boldsymbol{x} par une fonction \boldsymbol{f} .

<u>Aire ABCD</u>: $4 \times 2 = 8$. <u>Aire CDEF</u>: 2x.

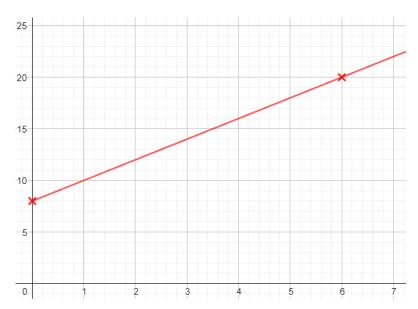
On a donc au final f(x) = 2x + 8.

2. Représente cette fonction sur le graphe en détaillant ta méthode.

D'après la question précédente, f est affine avec b = 8. Le graphe de f est donc une droite passant par le point (0; 8).

Calculons par exemple $f(6) = 2 \times 6 + 8 = 20$. Le graphe passe par le point (6 ; 20).

Je place ces 2 points et les relie pour tracer le graphe de f.



Comparer des fonctions affines

J'utilise les graphes pour comparer des fonctions affines

Lorsque 2 fonctions affines sont représentées graphiquement, il est possible de les **comparer**.

Exemple : Voici les représentations de 2 fonctions affines f et g.

Graphiquement on voit que:

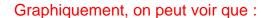
- ① Les fonctions sont égales pour x = 2 (point d'intersection).
- ② f est supérieure si x est compris entre 0 et 2
- \bigcirc f est inférieure si x est supérieur à 2

<u>Remarque</u>: Si les fonctions représentent le coût d'un produit pour 2 offres, cette comparaison est très utile pour savoir quelle offre est la plus intéressante!

Max souhaite s'abonner à un magazine scientifique. Il hésite entre 2 : A « science & vie » et B « sciences et avenir ».

Les 2 affichent leur tarif en fonction du nombre de mois d'abonnement.

S'il décide d'opter pour le moins cher, détaille quel sera son choix en fonction de la durée de son abonnement.



- Pour 5 mois les 2 offres auront le même coût de 40 € (point d'intersection).
- Pour une durée d'abonnement supérieure à 5 mois, sciences et avenir deviendra moins cher.

50

40

-30

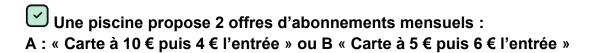
20

10

sciences et avenir

science & vie

- Pour une durée d'abonnement inférieure à 5 mois, science & vie sera moins cher.



1. Modélise le prix en fonction du nombre d'entrée x pour chacun des 2 abonnements par 2 fonctions f et g.

Abonnement A : f(x) = 10 + 4x Abonnement B : g(x) = 5 + 6x

2. Trace les graphes de ces fonctions dans le repère.

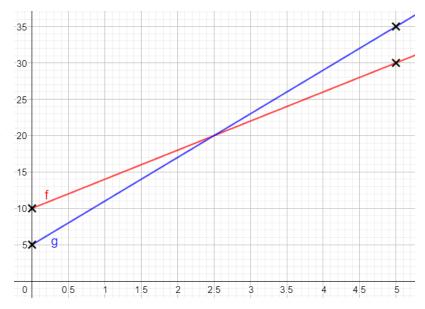
Les 2 fonctions sont affines donc représentées par des droites.

Fonction f: on a b = 10 et $f(5) = 10 + 4 \times 5 = 30$ donc la droite passe par (0 ; 10) et (5 ; 30).

Fonction g: on a b = 5 et $g(5) = 5 + 6 \times 5 = 35$ donc la droite passe par (0; 5) et (5; 35).

3. A partir de combien d'entrées dans le mois l'offre A devient plus intéressante ?

Graphiquement, on voit que l'abonnement A (fonction f) devient plus intéressant car moins cher à partir de 2,5 soit 3 entrées.



Pour se promener le long d'un canal, deux sociétés proposent une location de bateaux électriques. Les bateaux se louent pour un nombre entier d'heures.

- Le tarif proposé par la société A en fonction du nombre d'heures de location est représenté sur le graphique ci-dessous.
 - La société B propose le tarif suivant : 60 € de frais de dossier plus 15 € par heure de location.
- 1. Etude du tarif proposé par la société B :
- a. Montrer qu'en louant un bateau pour une durée de 2 heures, le prix à payer sera de 90 €.

Le prix pour 2h sera de $60 + 2 \times 15 = 90 \in$.

b. On désigne par x le nombre d'heures de location. On appelle f la fonction qui, au nombre d'heures de location, associe le prix, en euro, avec le tarif proposé par la société B. On admet que f est définie par : f(x) = 15x + 60.

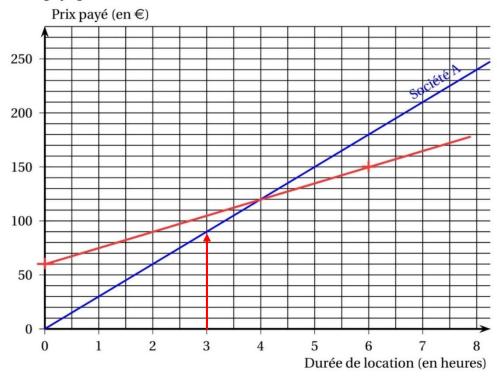
Sur le graphique donné ci-dessous, tracer la courbe représentative de la fonction f.

f est une fonction affine, sa courbe représentative est donc une droite. L'ordonnée à l'origine est 60 donc la droite passe par le pont (0 ; 60).

On a $f(6) = 15 \times 6 + 60 = 150$. Donc la droite passe par le point (6; 150)

On place les points puis on trace la droite correspondante (en rouge).

Prix payé pour la location d'un bateau en fonction de la durée de la location



2. Comparaison des deux tarifs :

On souhaite louer un bateau pour une durée de 3 heures. Quelle société doit-on choisir pour avoir le tarif le moins cher ? Quel prix va-t-on payer dans ce cas ?

D'après le graphique complété, on doit choisir la société A et le tarif est de 90 €.

Sur le site de **Education**, tu trouveras **d'autres ressources** pour réviser cette notion :

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices 3ème Mathématiques : Gestion des données Fonctions - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Fonctions affines - 3ème - Brevet des collèges avec Mon Pass Maths

Découvrez d'autres exercices en : 3ème Mathématiques : Gestion des données Fonctions

- <u>Tracer et lire la représentation graphique d'une fonction 3ème Brevet des collèges avec Mon Pass</u> Maths
- <u>Généralités sur les fonctions et tableaux de valeurs 3ème Brevet des collèges avec Mon Pass</u>

 <u>Maths</u>
 - Synthèse fonctions 3ème Exercices avec les corrigés
 - <u>Déterminer une fonction affine et linéaire 3ème Exercices avec les corrigés</u>
 - Fonctions affines 3ème Exercices avec les corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices 3ème Mathématiques : Gestion des données Autres fiches PDF à imprimer
- Exercices 3ème Mathématiques : Gestion des données Probabilités PDF à imprimer
- Exercices 3ème Mathématiques : Gestion des données Proportionnalité PDF à imprimer
- Exercices 3ème Mathématiques : Gestion des données Statistiques PDF à imprimer

Besoin d'approfondir en : 3ème Mathématiques : Gestion des données Fonctions

- Cours 3ème Mathématiques : Gestion des données Fonctions
- Evaluations 3ème Mathématiques : Gestion des données Fonctions
- Séquence / Fiche de prep 3ème Mathématiques : Gestion des données Fonctions
- Cartes mentales 3ème Mathématiques : Gestion des données Fonctions