Calcul des dérivées - Correction

Exercice 01 : Calculer les dérivées des fonctions suivantes.

a. f définie sur \mathbb{R} par $f(x) = 5x^4 - 2x^3 + 3x^2 - x + 7$

f est une fonction polynôme, donc elle est dérivable sur \mathbb{R} .

$$f'(x) = 5 X 4x^3 - 2 X 3x^2 + 3 X 2x - 1$$

$$f'(x) = 20x^3 - 6x^2 + 6x - 1$$

b. g définie sur [2;
$$+\infty$$
[par $g(x) = (3x + 4)\sqrt{x - 2}$

g est un produit de fonctions dérivables sur]2; $+\infty$ [.

On pose
$$u(x) = 3x + 4$$
 et $v(x) = \sqrt{x-2}$, $u'(x) = 3$ et $v'(x) = \frac{1}{2\sqrt{x-2}}$.

$$g'(x) = u'X v + u X v'$$

$$g'(x) = 3X\sqrt{x-2} + (3x+4)X \frac{1}{2\sqrt{x-2}} = \frac{(3\sqrt{x-2})(2\sqrt{x-2}) + (3x+4)}{2\sqrt{x-2}}$$

$$g'(x) = \frac{6(x-2) + (3x+4)}{2\sqrt{x-2}} = \frac{6x - 12 + 3x + 4}{2\sqrt{x-2}} = \frac{9x - 8}{2\sqrt{x-2}}$$

$$g'(x) = \frac{9x - 8}{2\sqrt{x - 2}}$$

c. h définie sur]
$$-\infty$$
; $\frac{2}{3}[U]\frac{2}{3}$; $+\infty[par h(x)] = \frac{2x+1}{3x-2}$

h est un quotient de fonctions dérivables sur] $-\infty$; $\frac{2}{3}$ [U] $\frac{2}{3}$; $+\infty$ [.

On pose
$$u(x) = 2x + 1$$
 et $v(x) = 3x - 2$, $u'(x) = 2$ et $v'(x) = 3$.

$$h'(x) = \frac{u'X \ v - u \ X \ v'}{v^2}$$

$$h'(x) = \frac{2 X (3x - 2) - (2x + 1)X 3}{(3x - 2)^2} = \frac{6x - 4 - 6x - 3}{(3x - 2)^2} = \frac{-7}{(3x - 2)^2}$$

$$h'(x) = \frac{-7}{(3x-2)^2}$$

Exercice 02: Vérification

Vérifier les résultats suivants donnés par un logiciel de calcul formel.

Fonction	Dérivée
$f(x) = \frac{x^2 - 6x + 1}{x^2 + x + 1}$	$f'(x) = \frac{7(x^2 - 1)}{(x^2 + x + 1)^2}$
$f(x) = 2x - 1 + \frac{1}{x - 4}$	$f'(x) = \frac{2x^2 - 16x + 31}{(x - 4)^2}$

• $f(x) = \frac{x^2 - 6x + 1}{x^2 + x + 1}$, f est un quotient de deux polynômes et le dénominateur n'est jamais nul ($\Delta = -3$); donc f est dérivable sur \mathbb{R} .

On pose
$$u(x) = x^2 - 6x + 1$$
 et $v(x) = x^2 + x + 1$, $u'(x) = 2x - 6$ et $v'(x) = 2x + 1$.

$$f'(x) = \frac{u'X \ v - u \ X \ v'}{v^2}$$

$$f'(x) = \frac{(2x-6)X(x^2+x+1) - (x^2-6x+1)(2x+1)}{(x^2+x+1)^2}$$

$$f'(x) = \frac{7x^2 - 7}{(x^2 + x + 1)^2} = \frac{7(x^2 - 1)}{(x^2 + x + 1)^2}$$

• $f(x) = 2x - 1 + \frac{1}{x-4}$, f est une somme de deux fonctions dérivables \mathbb{R} - {4}.

La première est une fonction affine et la deuxième est l'inverse de x - 4. On utilise $(\frac{1}{v})' = \frac{-v'}{v^2}$ pour la deuxième fonction.v = x - 4, v' = 1

$$f'(x) = 2 + \frac{-1}{(x-4)^2} = \frac{2(x-4)^2 - 1}{(x-4)^2} = \frac{2(x^2 - 8x + 16) - 1}{(x-4)^2} = \frac{2x^2 - 16x + 32 - 1}{(x-4)^2}$$
$$f'(x) = \frac{2x^2 - 16x + 31}{(x-4)^2}$$

Exercice 03 : Calculer la dérivée de la fonction suivante

f définie sur
$$[-1; +\infty[par f(x) = \sqrt{x+1} + (x^2 + x - 3)^2]$$

f est une somme deux fonctions dérivables $[-1; +\infty[$.La première est une fonction racine carrée et la deuxième est un polynôme. On utilise : (u + v)' = u' + v'.

On pose
$$u(x) = \sqrt{x+1}$$
 et $v(x) = (x^2 + x - 3)^2$, $u'(x) = \frac{1}{2\sqrt{x+1}}$

Pour le polynôme on utilise $(m^2)' = 2mm'$

On pose
$$m(x) = x^2 + x - 3$$
, d'où : $m'(x) = 2x + 1$, donc : $v'(x) = 2X(2x + 1)X(x^2 + x - 3)$
 $v'^{(x)} = 4x^3 + 6x^2 + 2x - 18$

$$f'(x) = u'(x) + v'(x) = \frac{1}{2\sqrt{x+1}} + 2X(2x+1)X(x^2+x-3)$$

$$f'(x) = \frac{1 + (2\sqrt{x+1})(2X(2x+1)X(x^2+x-3))}{2\sqrt{x+1}}$$

$$f'(x) = \frac{\left[1 + \left(2\sqrt{x+1}\right)2X(2x+1)X(x^2+x-3)\right]X\sqrt{x+1}}{2\sqrt{x+1}X\sqrt{x+1}}$$

$$f'(x) = \frac{\sqrt{x+1} + 4(x+1)(2x+1)X(x^2+x-3)}{2(x+1)}$$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Mathématiques : Fonctions - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• <u>Dérivées - Calcul - 1ère - Exercices corrigés</u>

Découvrez d'autres exercices en : Première - 1ère Mathématiques : Fonctions

- Cosinus et sinus d'un réel Première Exercices de trigonométrie
- Angles orientés Cercle trigonométrique Première Exercices
- Angle orienté de deux vecteurs non nuls Première Exercices corrigés
- Angle orienté Radian Première Exercices de mesure
- <u>Dérivée f' de f Première Exercices corrigés</u>

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Mathématiques : Fonctions Fonctions Généralités PDF à imprimer
- Exercices Première 1ère Mathématiques : Fonctions Fonctions de référence PDF à imprimer
- Exercices Première 1ère Mathématiques : Fonctions Trigonométrie PDF à imprimer

Besoin d'approfondir en : Première - 1ère Mathématiques : Fonctions

Cours Première - 1ère Mathématiques : Fonctions