Sens de variation de u + K, λu et 1/u - Correction

Exercice 01:

Soit la fonction u définie sur R par : u(x) = 2x - 7

1. Préciser le sens de variation de u et étudier le signe de u(x) selon les valeurs de x

u est une fonction affine de coefficient directeur positif 2, donc u est croissante sur R.

$$2x - 7 = 0$$
 si $x = 3.5$, donc $u(x) < 0$ si $x < 3.5$ et $u(x) > 0$ si $x > 3.5$

- 2. Soit la fonction f définie par : $f = \frac{1}{11}$
- a. Quel est l'ensemble de définition de f?

La fonction f est définie pour les valeurs de x telles que $u(x) \neq 0$, donc si $x \neq 3.5$, l'ensemble de définition de f est R /{3.5}

b. Etudier le sens de variation de f

Comme $f = \frac{1}{u}$ et u est croissante sur chacun des intervalles sur lesquels elle est définie, la fonction f est décroissante sur chacun des intervalles sur lesquels elle est définie.

Donc f est décroissante sur $]-\infty$; 3.5[v]3.5; $+\infty$ [

Exercice 02:

Soit la fonction u définie sur R par $u(x) = x^2$

1. Préciser le sens de variation de u et étudier le signe de u(x) selon les valeurs de x.

La fonction carré est décroissante sur $]-\infty$; 0] et croissante sur $[0; +\infty[$, elle s'annule en 0 et est positive sur R.

- 2. Soit la fonction f définie par $f = \frac{1}{11}$
- a. Quel est l'ensemble de définition de f?

La fonction f est définie pour les valeurs de x telles que $u(x) \neq 0$ donc $x \neq 0$

L'ensemble de définition de f est R*

b. Etudier le sens de variation de f.

Comme u est décroissante sur $]-\infty$; 0[, la fonction f est croissante sur $]-\infty$; 0[.

Comme u est croissante sur]0; $+\infty[$, la fonction f est décroissante sur]0; $+\infty[$.

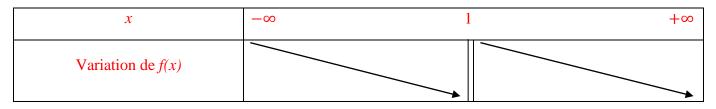
Exercice 03:

Soit la fonction f définie sur $R - \{1\}$ par $f(x) = 2 + \frac{4}{x-1}$

1. Quel est le sens de variation de la fonction v définie sur $R - \{1\}$ par $v(x) = \frac{4}{x-1}$, en déduire le sens de variation de f.

On étudie le sens de variation de la fonction v définie sur R $-\{1\}$ par $v(x) = \frac{4}{x-1}$

La fonction u définie par u(x) = x - 1 est croissante sur R et s'annule pour x = 1. Donc la fonction $\frac{1}{u}$ est décroissante sur R $- \{1\}$. Comme v = 4 X $\frac{1}{u}$, v est aussi décroissante sur R $- \{1\}$. Comme f = v + 2, f est décroissante sur R $- \{1\}$. On dresse le tableau de variation suivant :



- 2. Soit la fonction g définie par $g = \frac{1}{f}$
- a. Quel est l'ensemble de définition Dg de g.

La fonction g est définie pour les valeurs de x telles que $f(x) \neq 0$

On résout l'équation f(x) = 0

Si
$$x \ne 1, 2 + \frac{4}{x-1} = 0 \Rightarrow \frac{4}{x-1} = -2 \Rightarrow 4 = -2(x-1) \Rightarrow 4 - -2x - 2 \Rightarrow x = -1$$

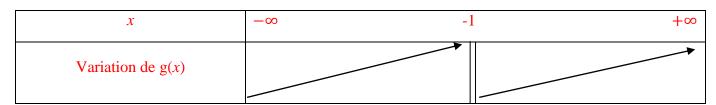
La solution de l'équation f(x) = 0 est -1 donc $D_g = R - \{-1\}$

b. Etudier le sens de variation de g.

Comme $g = \frac{1}{f}$ et que f est décroissante sur chacun des intervalles sur lesquels elle est définie, la fonction g est croissante sur chacun des intervalles sur lesquels elle est définie.

Donc g est croissante sur $D_g = R - \{-1\}$

On dresse le tableau de variation suivant :



3. Démontrer que, pour tout réel x de D_g $g(x) = \frac{1}{2} - \frac{1}{x+1}$

On transforme l'écriture de f:

$$f(x) = 2 + \frac{4}{x - 1} = \frac{2(x - 1) + 4}{x - 1} = \frac{2x + 2}{x - 1}$$

Comme g =
$$\frac{1}{f}$$
, g(x) = $\frac{x-1}{2x+2}$

$$\frac{1}{2} - \frac{1}{x+1} = \frac{1 X (x+1) - 1 X 2}{2(x+1)} = \frac{x-1}{2(x+1)}$$

Donc la forme réduite de g est :

$$g(x) = \frac{1}{2} - \frac{1}{x+1}$$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Mathématiques : Fonctions Fonctions de référence Fonctions homographiques - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Sens de variation - Première - Exercices corrigés

Découvrez d'autres exercices en : Première - 1ère Mathématiques : Fonctions Fonctions de référence Fonctions

- Homographiques Première Exercices corrigés sur les fonctions
- Calcul avec les fractions Première Exercices corrigés Rappel

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Mathématiques : Fonctions Fonctions de référence Equation du second degré PDF à imprimer
- Exercices Première 1ère Mathématiques : Fonctions Fonctions de référence Fonction racine carrée PDF à imprimer
- Exercices Première 1ère Mathématiques : Fonctions Fonctions de référence Fonction valeur absolue PDF à imprimer
- Exercices Première 1ère Mathématiques : Fonctions Fonctions de référence Fonctions polynômes de degré 2 PDF à imprimer
- Exercices Première 1ère Mathématiques : Fonctions Fonctions de référence Les Dérivées PDF à imprimer

Besoin d'approfondir en : Première - 1ère Mathématiques : Fonctions Fonctions de référence Fonctions hon

• <u>Cours Première - 1ère Mathématiques : Fonctions Fonctions de référence Fonctions homographiques</u>