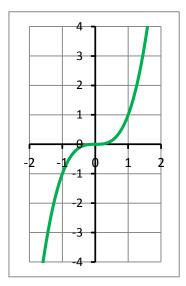
Exercice 01:

Pour résoudre l'équation $x^3 = 2$, on utilise une calculatrice. On a affiché la courbe représentative de la fonction cube et des tableaux des valeurs.

	۸	В	С	D	E
	Α	D	C	U	
1	x	x^3		x	x^3
2	1	1		1,2	1,7280
3	1,1	1,33		1,21	1,7716
4	1,2	1,73		1,22	1,8158
5	1,3	2,20		1,23	1,8609
6	1,4	2,74		1,24	1,9066
7	1,5	3,38		1,25	1,9531
8	1,6	4,10		1,26	2,0004
9	1,7	4,91		1,27	2,0484
10	1,8	5,83		1,28	2,0972
11	1,9	6,86		1,29	2,1467
12	2	8		1,3	2,1970



- 1. Graphiquement, l'équation $x^3 = 2$ admet une seule solution c.
- a. Déterminer des encadrements de c d'amplitude 0.1 et 0.01.

L'encadrement de c d'amplitude 0.1:1.2 < c < 1.3

L'encadrement de c d'amplitude 0.01:1.25 < c < 1.26

b. Développer $(x - c)(x^2 + cx + c^2)$.

$$(x-c)(x^2+cx+c^2) = x^3+cx^2+c^2x-cx^2-c^2x-c^3 = x^3-c^3$$

- 2. Soit f la fonction définie sur R par $f(x) = \frac{x^4}{4} 2x + 1$
- a. Etudier les variations de f et dresser son tableau de variations.

La fonction f est une fonction polynôme, donc elle est définie sur R. Elle a pour dérivé : $f'(x) = x^3 - 2$

D'après la question précédente on a la factorisation :

$$f'(x) = (x - c)(x^2 + cx + c^2)$$
, c étant la racine cubique de 2.

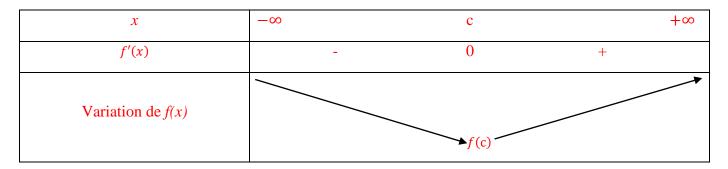
Le trinôme $x^2 + cx + c^2$ a pour discriminant $\Delta = -3c^2$, il garde donc toujours le même signe,

Or pour x = 0, il vaut c^2 , donc pour tout $x x^2 + cx + c^2 > 0$

La dérivée a donc le signe de x - c, elle est négative sur $]-\infty$; c[et positive sur]c; $+\infty$ [

Donc : f est décroissante sur $]-\infty$; c[et croissante sur]c ; $+\infty[$

On dresse le tableau de variation suivant :



b. Donner la valeur exacte de f(c) et en déduire un encadrement du minimum de f.

$$f(c) = \frac{c^4}{4} - 2c + 1 = \frac{c^3 X c}{4} - 2c + 1 = \frac{2c}{4} - 2c + 1 = -1.5c + 1$$

 $(c^3 = 2 c$ étant la racine cubique de 2)

Comme :
$$1.25 < c < 1.26$$
 on a : $-1.5 \times 1.25 + 1 > -1.5c + 1 > -1.5 \times 1.26 + 1$

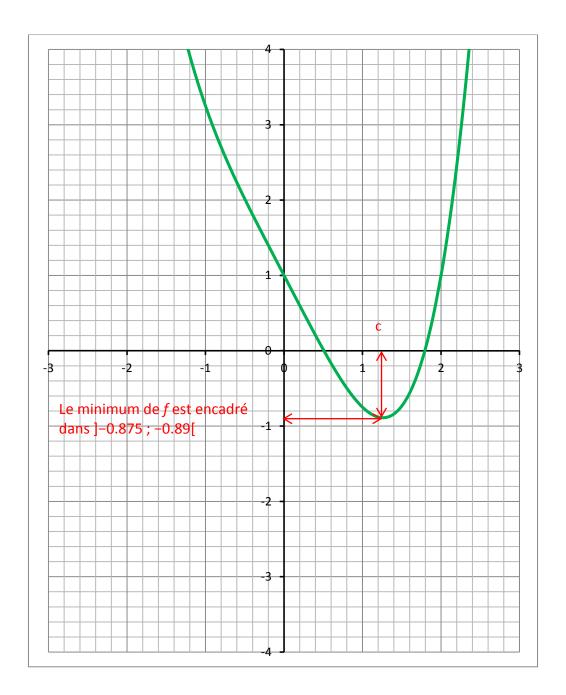
Soit:
$$-0.875 > f(c) > -0.89$$

Un intervalle d'encadrement du minimum de f est donc :]-0.875; -0.89[

c. Tracer la courbe représentative de f et vérifier les résultats précédents.

Sur la courbe représentative de f, on remarque bien que f admet un minimum compris entre -0.875 et

-0.89 en c compris entre 1.2 et 1.3. Donc les résultats précédents sont vérifiés.



Pass Education

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Mathématiques : Fonctions Fonctions - Généralités Fonction croissante / décroissante - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Fonction croissante ou décroissante sur un intervalle - Première - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

• Exercices Première - 1ère Mathématiques : Fonctions Fonctions - Généralités Opérations sur les fonctions - PDF à imprimer

Besoin d'approfondir en : Première - 1ère Mathématiques : Fonctions Fonctions - Généralités Fonction crois

• <u>Cours Première - 1ère Mathématiques : Fonctions Fonctions - Généralités Fonction croissante / décroissante</u>