
Lire, construire et interpréter un histogramme

Correction

Prérequis : cours « Statistiques ».

- Notion d'effectif, fréquence et étendue.
- ▶ Déterminer la moyenne, simple et pondérée, et la médiane d'une série statistique.

Tracer un histogramme.

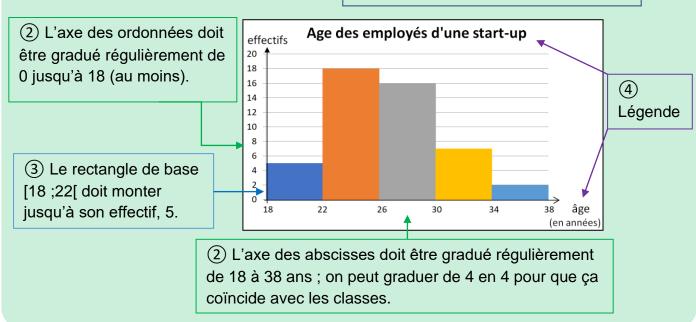
Un **histogramme** est un **diagramme** constitué de **rectangles** dont l'aire est proportionnelle à l'effectif représenté.

- → Il sert à représenter les séries dont les valeurs sont regroupées par **classes**, c'est-àdire des intervalles.
- → Les classes représentées en 3^{ème} ayant toutes la même amplitude, les rectangles d'un histogramme ont tous la même largeur, seule leur hauteur importe.

Etape ①: si besoin, je regroupe les valeurs de la série par **classes**, de <u>même amplitude</u>.

Etape ②: je trace un repère:

- l'axe des **abscisses** représente le **critère étudié** : il doit être **gradué régulièrement**, sans forcément commencer à zéro, et en utilisant les valeurs des classes.
- l'axe des **ordonnées** représente les **effectifs** : il doit être **gradué régulièrement**, en <u>commençant de zéro</u>, et en tenant compte de la valeur du **plus grand effectif**.


Etape ③ : je **trace** des rectangles, avec comme largeur la classe étudiée, et comme hauteur l'effectif correspondant.

Etape 4: je légende les axes et je mets un titre.

<u>Remarque</u>: Des couleurs différentes pour les rectangles rendent l'histogramme plus lisible. On peut utiliser une légende extérieure si besoin. <u>Exemple</u>: Une start-up a relevé l'âge de ses employés ; les résultats sont présentés dans le tableau ci-dessous. On souhaite construire l'histogramme correspondant :

Age (en années)	[18 ; 22[[22 ; 26[[26 ; 30[[30 ; 34[[34 ; 38[+
Effectif	5	18	16	7	2	

1 Les valeurs sont déjà données par classes de même amplitude : 4 ans.

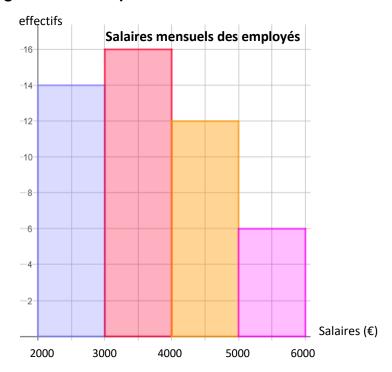
Voici un tableau donnant la répartition des salaires de ces employés :

Salaire mensuel moyen brut	Effectif
Entre 2000 et 3000 €	14
Entre 3000 et 4000 €	16
Entre 4000 et 5000 €	12
Entre 5000 et 6000 €	6

1. Les classes ont-elles toutes la même amplitude ? Quelle est cette amplitude ?

3000 - 2000 = 1000; 4000 - 3000 = 1000;

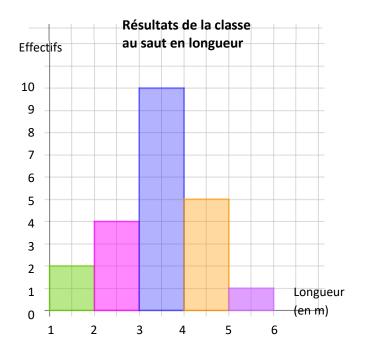
5000 - 4000 = 1000; 6000 - 5000 = 1000.


Toutes les classes ont la même amplitude de 1000 €.

2. Les classes ont-elles toutes le même effectif?

Les classes ont des effectifs différents :

14, 16, 12 et 6. Il n'y a pas le même nombre de salariés dans chaque catégorie de salaire.


3. Complète l'histogramme correspondant :

Voici un tableau répertoriant les performances au saut en longueur d'une classe :

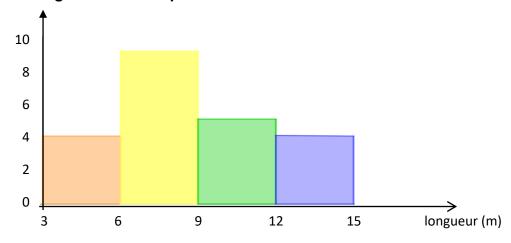
Longueur (en m)	[1 ; 2[[2;3[[3 ; 4[[4 ; 5[[5 ; 6[
Nombre d'élèves	2	4	10	5	1

Représente cette série statistique à l'aide d'un histogramme :

 $\overline{ }$

Voici une série répertoriant les performances au lancer de poids de plusieurs athlètes :

$$14,86 - 3,24 - 5,62 - 7,80 - 11,23 - 5,12 - 8,21 - 13,50 - 14,25 - 9,56 - 4,89 - 6,36 - 8,40 - 8,72 - 10,25 - 9,80 - 12,17 - 6,78 - 8,10 - 11,47 - 6,42 - 7,42$$


1. Quelle est la longueur minimale de lancer ? La valeur maximale ?

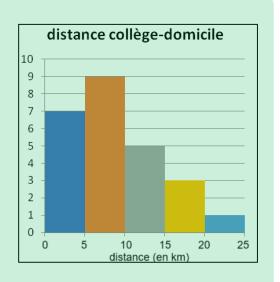
Le lancer le plus petit est 3,24 m et le lancer le plus long est 14,86 m.

2. Reporte ces informations dans le tableau, en regroupant les valeurs par classes d'amplitude 3 m.

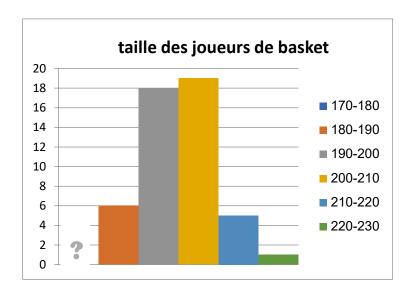
Longueur (en m)	[3 ; 6[[6 ; 9[[9 ; 12[[12 ; 15[
Nombre d'élèves	4	9	5	4

3. Construis l'histogramme correspondant :

Lire et interpréter un histogramme.


Méthode pour lire et interpréter les valeurs et effectifs sur un histogramme.

Sur un histogramme, tu peux donc lire :


- les valeurs de la série, par classes ;
 - → avec les valeurs minimale et maximale de la série, tu peux calculer l'étendue.
- les effectifs de chaque classe ;
 - → tu peux déterminer l'effectif total ;
 - \rightarrow tu peux calculer une **fréquence** $\left(fréquence = \frac{effectif}{effectif\ total}\right)$.

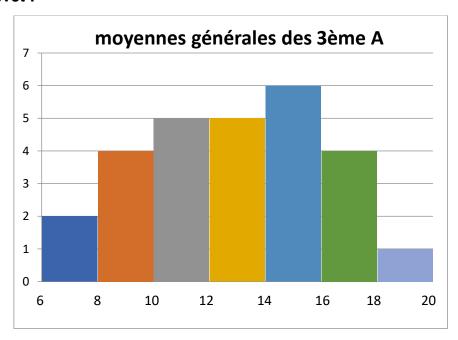
<u>Exemple</u>: On étudie la distance entre le collège et le domicile des élèves d'une classe :

- Les élèves de cette classe vivent entre 0 et 25 km du collège ; l'étendue est 25 km.
- ▶ 7 élèves vivent à moins de 5 km du collège.
- → 7 + 9 + 5 + 3 + 1 = 25 ; l'effectif total de la classe est 25 élèves.
- 7 + 9 = 16 ; 16 élèves vivent à moins de 10 km du collège.
- $\frac{5}{25}$ = 0,2 ou $\frac{20}{100}$ La fréquence des élèves vivant entre 10 et 15 km du collège est 0,2 (ou 20%)

Voici l'histogramme illustrant la taille des 51 joueurs de basket professionnels de la team France sur la dernière année :

1. La donnée pour la classe [170 ;180[a été mal saisie. Retrouve l'effectif des joueurs de moins de 1m80.

6 + 18 + 19 + 5 + 1 = 49 51 - 49 = 2 II y a 2 joueurs de moins de 1m80.


2. Est-il vrai que plus de la moitié des joueurs mesurent plus de 2m?

19 + 5 + 1 = 25; il y a 25 joueurs de plus de 2m sur 51 joueurs au total. Ça ne représente pas tout à fait la moitié des joueurs.

3. Quelle est la fréquence, arrondie au pourcentage près, des joueurs mesurant entre 1m80 et 1m90 ?

Ils sont 6. $fréquence = \frac{6}{51} \approx 0.12$; $0.12 \times 100 = 12$. Leur fréquence est d'environ 12%.

Le professeur principal de la classe de 3^{ème} A (professeur de mathématiques...) a illustré les moyennes générales de ses élèves par un histogramme pour se projeter sur les résultats du brevet :

- 1. Combien d'élèves ont une moyenne générale entre 12 et 14 ? Ils sont 5.
- 2. Quel est l'intervalle de notes le plus représenté dans cette classe ?

Ce sont les moyennes comprises dans l'intervalle [14 ; 16[qui ont le plus grand effectif.

3. Quel est l'effectif total de la classe de 3ème A?

On additionne tous les effectifs : 2 + 4 + 5 + 5 + 6 + 4 + 1 = 27. Il y a 27 élèves en $3^{\text{ème}}$ A.

4. Combien d'élèves ont une moyenne supérieure ou égale à 12, ce qui correspondrait à une mention au brevet ?

5 + 6 + 4 + 1 = 16; il y a 16 élèves avec une moyenne supérieure ou égale à 12.

5. Le professeur leur annonce : « je serais satisfait des résultats du brevet si au moins 60% d'entre vous obtiennent une mention, ou si vous atteignez au moins 80% de réussite! ».

L'admission au brevet correspond à une moyenne supérieure ou égale à 10.

Si la classe suit le modèle actuel au brevet, leur professeur sera-t-il satisfait ?

- Les élèves pouvant avoir une mention sont 16 sur 27.
 - $\frac{16}{27} \approx 0.59 \ 0.59 \times 100 = 59$ Cela représenterait 59 % < 60 % X
- Les élèves ayant plus de 10 de moyenne sont : 5 + 5 + 6 + 4 + 1 = 21

$$fréquence = \frac{21}{27} \approx 0,777 \quad 0,777 \times 100 = 77,7$$

Le professeur risque d'être déçu : aucun de ses deux critères n'est pour le moment atteint..

Méthode pour déterminer la moyenne et la médiane d'une série à partir de son histogramme.

Moyenne : il s'agit d'une moyenne pondérée. Il faut utiliser le centre de chaque classe, son effectif et l'effectif total.

Rappel:
$$moyenne = \frac{somme \ de \ (chaque \ centre \ de \ classe \times son \ effectif)}{effectif \ total}$$

Médiane : on donnera la classe dans laquelle se trouve la médiane, appelée « **classe médiane** ».

Il faut utiliser:

- l'effectif total pour déterminer la **position** de la médiane ;
- les effectifs pour calculer les **effectifs cumulés croissants** (on peut les reporter sur chaque rectangle).

Exemple : Une usine teste, sur un échantillon, la durée de vie de ses ampoules électriques :

Durée de vie des ampoules 50 82 45 40 35 30 39 25 100 20 17 15 10 5 12 18 n 1200 1000 1400 1600 1800 2000 durée (en h) Le centre de la classe [1000; 1200[est 1100.

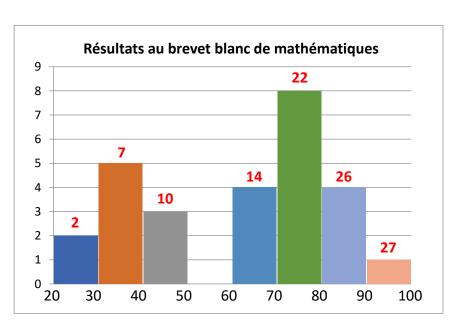
Moyenne:

1100×5+1300×12+1500×22+1700×43+1900×18 5+12+22+43+18

$$=\frac{161\,400}{100}\,=1614$$

La durée de vie moyenne est 1614 h.

Médiane :


Il y a 100 valeurs, la médiane est donc entre la 50 et 51^{ème}.

Calculons et notons les **effectifs cumulés** sur chaque rectangle.

→ La 50^{ème} et la 51^{ème} valeur se trouvent dans le rectangle entre 1600 et 1800 : la classe médiane est [1600 ; 1800[.

- On a relevé les notes, sur 100, des élèves d'une classe de 3ème au brevet blanc de mathématiques :
- 1. Explique le fait qu'il n'y a pas de rectangle de base [50 ; 60[.

Aucun élève n'a obtenu une note entre 50 (compris) et 60 (non compris).

2. Détermine la moyenne de la classe à cette épreuve, arrondie au dixième.

On utilise les centres de classe.

$$moyenne = \frac{25 \times 2 + 35 \times 5 + 45 \times 3 + 65 \times 4 + 75 \times 8 + 85 \times 4 + 95 \times 1}{2 + 5 + 3 + 4 + 8 + 4 + 1} = \frac{1655}{27} \approx 61,3$$

3. Détermine la classe médiane.

L'effectif total de cette classe est de 27 élèves, la médiane est donc la 14^{ème} valeur ; utilisons les effectifs cumulés croissants (reportés sur l'histogramme). La classe médiane est [60 ; 70[.

Questions de brevet.

Document 1

Le surpoids est devenu un problème majeur de santé, celui-ci prédispose à beaucoup de maladies et diminue l'espérance de vie. L'indice le plus couramment utilisé est celui de masse corporelle (IMC).

Document 2

L'IMC est une grandeur internationale permettant de déterminer la corpulence d'une personne adulte entre 18 ans et 65 ans.

Il se calcule avec la formule suivante : IMC = $\frac{masse}{taille^2}$ avec « masse » en kg et « taille » en m.

Normes: $18,5 \le IMC < 25$ corpulence normale; $25 \le IMC < 30$ surpoids; IMC > 30 obésité

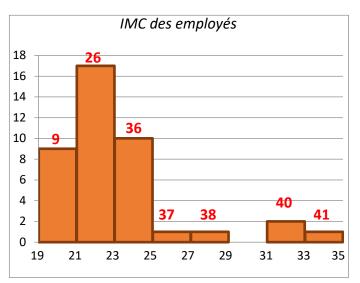
1. Dans une entreprise, lors d'une visite médicale, un médecin calcule l'IMC de six des employés. Il utilise pour cela une feuille de tableur dont voici un extrait :

	A	В	С	D	E	F	G	
1	Taille (en m)	1,69	1,72	1,75	1,78	1,86	1,88	
2	Masse (en kg)	72	85	74	70	115	85	
3	IMC (*)	25,2	28,7	24,2	22,1	33,2	24,0	
4	(*) valeur approchée au dixième							

a. Combien d'employés sont en situation de surpoids ou d'obésité dans cette entreprise ?

Il y a 3 personnes sur 6 en situation de surpoids ou d'obésité ($IMC \ge 25$).

b. Laquelle de ces formules a-t-on écrite dans la cellule B3, puis recopiée à droite, pour calculer l'IMC ? Recopier la formule correcte sur la copie.


$$= 72/1,69^2$$
 $= B1/(B2 * B2)$ $= B2/(B1 * B1)$ $= $B2/($B1*$B1)$

2. Le médecin a fait le bilan de l'IMC de chacun des 41 employés de l'entreprise. Il a reporté les informations dans le tableau suivant dans lequel les IMC ont été regroupés par intervalles.

IMC	[19 ; 21[[21 ; 23[[23 ; 25[[25 ; 27[[27 ; 29[[29 ; 31[[31 ; 33[[33 ; 35[
effectif	9	17	10	1	1	0	2	1

a. Compléter l'histogramme correspondant :

b. Calculer une valeur approchée, arrondie à l'entier près, de l'IMC moyen des employés de cette entreprise.

On utilise le centre de chaque classe :

$$m = \frac{20 \times 9 + 22 \times 17 + 24 \times 10 + 26 \times 1 + 28 \times 1 + 30 \times 0 + 32 \times 2 + 34 \times 1}{41} \approx 23,1$$

L'IMC moyen des employés de cette entreprise est d'environ 23.

c. Quel est l'IMC médian ?

L'effectif de cette entreprise est de 41, la médiane est donc la 21^{ème} valeur de la série ordonnée, utilisons les effectifs cumulés croissants. L'IMC médian est donc la classe [21 ;23[.

d. On lit sur certains magazines : « On estime qu'au moins 5 % de la population mondiale est en surpoids ou est obèse ». Est-ce le cas pour les employés de cette entreprise ?

 $IMC \ge 25: 1+1+2+1=5$. Il y a 5 personnes en situation de surpoids ou d'obésité dans cette entreprise.

 $5 \div 41 \times 100 \approx 12 > 5$. Environ 12 % des employés de cette entreprise sont en situation de surpoids ou d'obésité, donc plus de 5 %. L'affirmation du magazine est vraie pour cette entreprise.

Pour aller plus loin.

Sur le site de **Equication**, tu trouveras **d'autres ressources** pour réviser cette notion :

Séquence complète Lire, construire et interpréter un histogramme

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices 3ème Mathématiques : Gestion des données Statistiques Construire un graphique - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Lire, construire et interpréter un histogramme - 3ème - Brevet des collèges avec Mon Pass Maths

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices 3ème Mathématiques : Gestion des données Statistiques Effectifs PDF à imprimer
- Exercices 3ème Mathématiques : Gestion des données Statistiques Étendue et médiane d'une série statistique PDF à imprimer
- Exercices 3ème Mathématiques : Gestion des données Statistiques Calculer une moyenne PDF à imprimer