Concentration molaire - Correction

Exercice 01: Chlorure de baryum.

On prépare une solution aqueuse de chlorure de baryum telle que la concentration molaire effective des ions de chlorure soit $[Cl^-] = 0.02 \text{ mol.L}^{-1}$.

a. Ecrire l'équation de dissolution dans l'eau du chlorure de baryum de formule BaCl_{2 (s)}.

$$BaCl_{2(s)} \rightarrow Ba^{2+}_{(aq)} + 2CL^{-}_{(aq)}$$

b. Que vaut la concentration molaire effective des ions baryum dans cette solution ?

La concentration molaire en ions Ba²⁺ se déduit d'un tableau d'avancement correspondant à l'équation de dissolution.

		$BaCl_{2(s)} \rightarrow$	Ba ²⁺ (aq) +	2 CL ⁻ (aq)
	Avancement (mol)	Quantités de matière (mol)		
Etat initial	0	n	0	0
En cours de transformation	x	n-x	x	2 <i>x</i>
Etat final	x_{max}	$n-x_{max}$	x_{max}	$2x_{max}$

La quantité de matière d'ion Cl⁻ en solution est $2x_{max}$ alors que la quantité de matière de Ba²⁺ en solution est x_{max} .

$$[Cl^-] = \frac{2x_{max}}{V} = 0.02 \text{ mol. L}^{-1}$$

$$[Ba^{2+}] = \frac{x_{max}}{V} = \frac{1}{2} \left(\frac{2x_{max}}{V}\right) = \frac{1}{2} X[Cl^{-}] = \frac{0.02}{2} = 0.01 \text{ mol. L}^{-1}$$

Exercice 02: Le sérum physiologique

Le sérum physiologique est une solution aqueuse de chlorure de sodium. Il est conditionné dans des flacons de volume V = 5 mL contenant une masse m = 45 mg de chlorure de sodium.

 $\underline{Donn\acute{e}e}$: masses molaires: $M(Na) = 23 \text{ g.mol}^{-1} \text{ et } M(Cl) = 35.5 \text{ g.mol}^{-1}$.

a. Ecrire l'équation de dissolution du chlorure de sodium dans l'eau.

$$NaCl_{(s)} \rightarrow Na_{(aq)}^+ + Cl_{(aq)}^-$$

b. Calculer les concentrations molaires des ions chlorure et sodium.

La concentration molaire en ions Cl⁻ et en ions Na⁺ se déduisent d'un tableau d'avancement correspondant à l'équation de dissolution.

On calcule la quantité de matière n de chlorure de sodium dissous :

$$n_{(\text{NaCl}_{(s)})} = \frac{m_{(\text{NaCl}_{(s)})}}{M_{(\text{NaCl}_{(s)})}}$$

La masse molaire de chlorure de sodium : $M_{(NaCl_{(s)})} = M_{(Na)} + M_{(Cl)} = 23 + 35.5 = 58.5 g. mol^{-1}$

$$n_{\text{(NaCl}_{(s)})} = \frac{m_{\text{(NaCl}_{(s)})}}{M_{\text{(NaCl}_{(s)})}} = \frac{45 \text{ X } 10^{-3}}{58.5} = 7.7 \text{ X } 10^{-4} \text{ mol.}$$

		$NaCl_{(s)} \rightarrow$	Na ⁺ _(aq) +	Cl _(aq)	
	Avancement (mol)	Quantités de matière (mol)			
Etat initial	0	$7.7 X 10^{-4}$	0	0	
En cours de transformation	x	$7.7 X 10^{-4} - x$	x	x	
Etat final	x_{max}	$7.7 \times 10^{-4} - x_{max}$	x_{max}	x_{max}	

Le chlorure de sodium est entièrement dissout. On a donc :

$$7.7 \times 10^{-4} - x_{max} = 0$$
 soit: $x_{max} = 7.7 \times 10^{-4}$ mol

La quantité de matière d'ion Cl⁻ en solution est x_{max} alors que la quantité de matière de Na⁺ en solution est x_{max} . Donc :

$$[Cl^{-}] = [Na^{+}] = \frac{x_{max}}{V} = \frac{7.7 \times 10^{-4}}{5 \times 10^{-3}} = 0.15 \text{ mol. L}^{-1}$$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Physique - Chimie : Lois et modèles Dissolution de solides ioniques ou moléculaires Concentration molaire - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Concentration molaire - Première - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Physique Chimie : Lois et modèles Dissolution de solides ioniques ou moléculaires Dissolution d'un composé moléculaire dans un solvant PDF à imprimer
- Exercices Première 1ère Physique Chimie : Lois et modèles Dissolution de solides ioniques ou moléculaires Dissolution d'un solide ionique PDF à imprimer

Besoin d'approfondir en : Première - 1ère Physique - Chimie : Lois et modèles Dissolution de solides ioniqu

- <u>Cours Première 1ère Physique Chimie : Lois et modèles Dissolution de solides ioniques ou moléculaires Concentration molaire</u>
- <u>Vidéos pédagogiques Première 1ère Physique Chimie : Lois et modèles Dissolution de solides ioniques ou moléculaires Concentration molaire</u>