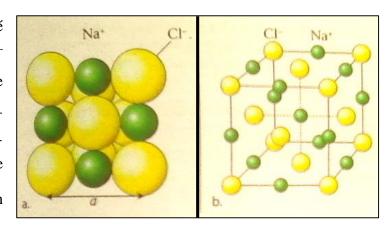
Cohésion des solides ioniques - Correction


Exercice 01: les solides ioniques

Compléter le tableau en donnant le nom de la formule des solides ioniques constitués des cations et anions correspondants.

	Ion sodium Na ⁺	Ion calcium Ca ²⁺	Ion aluminium Al ³⁺
Ion chlorure Cl ⁻	NaCl : chlorure de sodium	CaCl ₂ : chlorure de calcium	AlCl ₃ : chlorure d'aluminium
Ion hydroxyde OH-	NaOH : hydroxyde de sodium	Ca(OH) ₂ : hydroxyde de calcium	Al(OH) ₃ : hydroxyde d'aluminium
Ion carbonate CO ₃ ²⁻	Na ₂ CO ₃ : carbonate de sodium	CaCO ₃ : carbonate de calcium	Al ₂ (CO ₃) ₃ : carbonate d'aluminium

Exercice 02 : Cl⁻/ Na⁺.

Le chlorure de sodium est un cristal inonique formé par des ions sodium $\mathrm{Na^+}$ et des ions chlorure $\mathrm{Cl^-}$ disposés régulièrement. La maille est le volume le plus simple qui représente l'ensemble du cristal. Dans le cas du chlorure de sodium, c'est un cube. L'arête du cube est a=564 pm, la distance entre deux ions $\mathrm{Na^+}$ est $d_1=a\frac{\sqrt{2}}{2}$, la distance entre un ion $\mathrm{Cl^-}$ et un ion $\mathrm{Na^+}$ est $d_2=\frac{a}{2}$.

 $\underline{Donn\acute{e}s}$: Charge électrique élémentaire : $e = 1.6 \times 10^{-19} C$.

Constante de la loi de Coulomb : $k = 9 \times 10^9 \text{ N. m}^2 \cdot \text{C}^{-2}$

a. Rappeler la loi de Coulomb entre deux objets ponctuels de charges électriques q_A et q_B , séparés par une distance d.

Loi de Coulomb : Deux corps chargés électriquement exercent l'un sur l'autre une force électrostatique de norme :

$$F_{A/B} = F_{B/A} = k X \frac{|q_A X q_B|}{d^2}$$

k : constante de Coulomb, $k = 9 \times 10^9 \text{ N. m}^2 \cdot \text{C}^{-2}$.

F: est en newtons (N).

 q_A et q_B : les charges portées par les corps A et B en Coulomb (C).

d: distance entre les centres de deux corps en mètres (m).

b. Quelle est la charge électrique de l'ion chlorure Cl⁻? de l'ion sodium Na⁺?

L'ion chlorure Cl⁻ porte une charge électrique $-e = -1.6 \times 10^{-19} C$

L'ion sodium Na⁺ porte une charge électrique $+ e = +1.6 \times 10^{-19} C$

c. Calculer la valeur de la force électrostatique \vec{F}_{Cl^-/Na^+} exercée par un ion chlorure sur un ion sodium. Cette force est-elle attractive ou répulsive ?

$$F_{Cl^-/Na^+} = k \, X \, \frac{|q_{Cl^-} \, X \, q_{Na^+}|}{d^2}$$

La distance entre un ion de chlorure et un ion de sodium est :

$$d_2 = \frac{a}{2} = \frac{564}{2} = 282 \ pm = 282 \ X \ 10^{-12} \ m$$

$$F_{Cl^-/Na^+} = 9 X 10^9 X \frac{(1.6 X 10^{-19})^2}{(282 X 10^{-12})^2}$$

$$F_{Cl^-/Na^+} = 2.9 \, X \, 10^{-9} \, N$$

Ces deux ions, de signes contraires, s'attirent.

d. Calculer la valeur de la force électrostatique \vec{F}_{Na^+/Na^+} exercée entre deux ions sodium. Cette force estelle attractive ou répulsive ?

$$F_{Na^+/Na^+} = k X \frac{|q_{Na^+} X q_{Na^+}|}{d^2}$$

La distance entre un ion de chlorure et un ion de sodium est :

$$d_1 = \frac{a\sqrt{2}}{2} = 564 \frac{\sqrt{2}}{2} = 398 \ pm = 398 \ X \ 10^{-12} \ m$$

$$F_{Na^+/Na^+} = 9 X 10^9 X \frac{(1.6 X 10^{-19})^2}{(398 X 10^{-12})^2}$$

$$F_{Na^+/Na^+} = 1.5 X 10^{-9} N$$

Ces deux ions, de même signe, repoussent.

e. Pourquoi le solide ionique est-il stable alors qu'il y a des attractions et des répulsions au sein de cet ensemble ?

Les ions ont pour plus proche voisin des ions de signes contraires.

En raison de cette disposition, les forces attractives l'emportent sur les forces répulsives.

$$F_{Cl^-/Na^+} \approx 2 X F_{Na^+/Na^+}$$

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Physique - Chimie : Lois et modèles Cohésion des solides ioniques et moléculaires Cohésion des solides ioniques - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Cohésion des solides ioniques - Première - Exercices à imprimer

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices Première 1ère Physique Chimie : Lois et modèles Cohésion des solides ioniques et moléculaires Cohésion des solides moléculaires PDF à imprimer
- Exercices Première 1ère Physique Chimie : Lois et modèles Cohésion des solides ioniques et moléculaires Effets physiques des transferts thermiques PDF à imprimer

Besoin d'approfondir en : Première - 1ère Physique - Chimie : Lois et modèles Cohésion des solides ionique

- <u>Cours Première 1ère Physique Chimie : Lois et modèles Cohésion des solides ioniques et moléculaires Cohésion des solides ioniques</u>
- <u>Vidéos pédagogiques Première 1ère Physique Chimie : Lois et modèles Cohésion des solides</u> ioniques et moléculaires Cohésion des solides ioniques