Le chronométrage - Correction

Exercice 01:

L'éthiopien Hail Gebrselassie a établi, à Berlin le 28 septembre 2008, le nouveau record du monde du marathon (42.195 km) en 2 h 03 min 59 s.

1. Calculer la vitesse moyenne v de cet athlète en m.s⁻¹

La vitesse moyenne de Hail Gebrselassie s'exprime :

$$v = \frac{d}{\Delta t}$$

d = 42 195 m

 $\Delta t = 2 \text{ h } 03 \text{ min } 59 \text{ s} = 2 \text{ x } 3 600 + 3 \text{ x } 60 + 59 = 7 439 \text{ s}$

$$v = \frac{d}{\Delta t} = \frac{42195}{7439} = 5,672 \text{ m s}^{-1}$$

1 min = 60 s et 1 h = 3 600 s

Le résultat est exprimé avec 4 chiffres significatifs comme la durée est la moins précise des données.

2. Exprimer le temps de l'athlète en heures et en déduire sa vitesse en km h-1

d = 42, 195 km et

$$\Delta t = 2 \text{ h } 03 \text{ min } 59 \text{ s} = 2 + \frac{3}{60} + \frac{59}{3600} = 2.066 \text{ h}$$

$$v = \frac{d}{\Delta t} = \frac{42.195}{2.066} = 20.42 \text{ km. h}^{-1}$$

3. Montrer qu'on pouvait aussi trouver la vitesse en km.h⁻¹directement à partir du résultat de la première question.

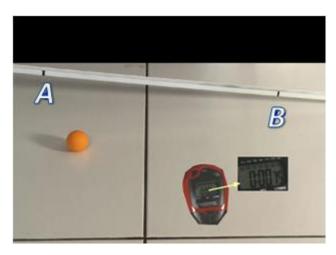
Le résultat peut aussi être obtenu en utilisant l'équivalence :

$$1 \text{m. s}^{-1} = 3.6 \text{ km. h}^{-1} \text{donc } v = 5.672 \text{ x} \ 3.6 = 20.42 \text{ km. h}^{-1}$$

4. Dans quel référentiel est calculée cette vitesse ?

Cette vitesse est calculée par rapport à la surface de la Terre donc dans le référentiel terrestre.

Exercice 02:


Pour simuler une descente en bobsleigh, on utilise une balle qui descend sur un plan incliné.

La balle a été lâchée d'un point O sans vitesse initiale. On a tracé deux repères A et B sur le parcours.

On dispose d'un chronomètre manuel. On déclenche le chronomètre lors du passage de la bille devant le repère A et on arrête le chronomètre lorsque la bille passe devant le repère B.

On réalise 10 fois la même expérience dans les mêmes conditions.

N°	1	2	3	4	5	6	7	8	9	10
t (en s)	0,75	0,69	0,73	0,78	0,77	0,76	0,76	0,73	0,72	0,82

1. Déterminer la valeur de la moyenne de ces mesures.

Moyenne arithmétique : \overline{X} la moyenne arithmétique est le quotient de la somme des valeurs \mathbf{x}_i par le nombre total de valeurs de la liste est \mathbf{n} .

On écrit:

$$\overline{X} = \frac{\sum X_I}{n} = \frac{0.75 + 0.69 + 0.73 + 0.78 + 0.77 + 0.76 + 0.76 + 0.73 + 0.72 + 0.82}{10}$$

 $\overline{X} \approx 0.751 \,\mathrm{s}$

2. Quel est l'écart maximal par rapport à la valeur de la moyenne ? Calculer la variance.

i	0,75	0,69	0,73	0,78	0,77	0,76	0,76	0,73	0,72	0,82
$\overline{\mathbf{x}}$	0,751									
$\overline{\mathbf{x}_i - \overline{\mathbf{x}}}$	0,0	-0,06	-0,02	0.03	0,02	0,01	0,01	-0,02	-0,03	0,07
$\left(\mathbf{x_i} - \overline{\mathbf{x}}\right)^2$	0	0,0036	0,0004	0,0009	0,0004	0,0001	0,0001	0,0004	0,0009	0,0049

On remarque que l'écart maximal est 0,07 s par rapport à la moyenne.

La variance est le quotient de la somme des carrés des écarts à la moyenne par le nombre n de l'effectif total.

$$\operatorname{var} X = \frac{\sum_{i} n_{i} (X_{i} - \overline{X})^{2}}{n} \approx 0.001169 \, s^{2}$$

3. Calculer l'écart type que représente-il ?

L'écart type caractérise la dispersion des valeurs. L'écart type σ est égal à la racine carrée de la variance.

$$\sigma = \sqrt{var} = \sqrt{0.001169} \approx 0.034$$

Pass Education

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Seconde - 2nde Physique - Chimie : La pratique du sport Mouvements et Forces Chronométrage - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Chronométrage - 2nde - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

• Exercices Seconde - 2nde Physique - Chimie : La pratique du sport Mouvements et Forces Forces et modification du mouvement - PDF à imprimer

Besoin d'approfondir en : Seconde - 2nde Physique - Chimie : La pratique du sport Mouvements et Forces C

- Cours Seconde 2nde Physique Chimie : La pratique du sport Mouvements et Forces Chronométrage
- <u>Vidéos pédagogiques Seconde 2nde Physique Chimie : La pratique du sport Mouvements et Forces Chronométrage</u>