Proportionnalité et représentation graphique

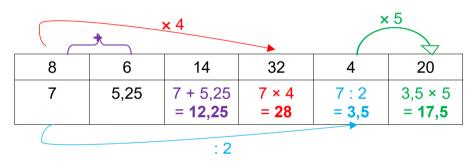
Correction

Exercices

Indique si les tableaux suivants correspondent à une situation de proportionnalité; justifie.

quantité	3	4	5
prix (€)	6	7	8

quantité (L)	2	3	6
masse (kg)	1,8	2,7	5,4


durée (j)	2	3	5
prix (€)	24	34	58

On constate que $3 \times 2 = 6$ Mais $4 \times 2 \neq 7$ Ce n'est pas un tableau de proportionnalité

1.8:2=0.9 2.7:3=0.95.4:6=0.9C'est un tableau de proportionnalité (et le coefficient est 0,9)

On constate que $2 \times 12 = 24$ Mais 3 × 12 ≠ 34 Ce n'est pas un tableau de proportionnalité

Complète ce tableau de proportionnalité en utilisant au moins deux méthodes différentes ; indique tes calculs.

Compléter ces tableaux à l'aide des produits en croix :

2,7	4,5
1,5	2,5

$$x = \frac{1,5 \times 4,5}{2.5} = 2,7$$
 $x = \frac{8,1 \times 1,7}{1.53} = 9$

8,1	1,53
9	1,7

$$x = \frac{8,1 \times 1,7}{1.53} = 9$$

$$x = \frac{7 \times 3.6}{30} = 0.84$$

Résous le problème suivant :

On considère que la durée de téléchargement d'un fichier est proportionnelle à sa taille. Compléter le tableau (arrondir au dixième si besoin) :

Taille du fichier (en Mo)	2	3,8	6	7,1
Durée de téléchargement (en s)	17	32,3	51	60
	$\frac{17 \times 3.8}{1} = 32$	6×17	$= 51 \frac{60}{}$	$\times 2 \approx 7.06$

$$\frac{17 \times 3.8}{2} = 32.3$$
 $\frac{6 \times 17}{2} = 51$ $\frac{60 \times 2}{17} \approx 7.06$

Il faut 32,3 s pour télécharger 3,8 Mo; 51 s pour télécharger 6 Mo; et en 6 s (1 min) on peut télécharger environ 7,1 Mo.

Il est préférable de réutiliser 2 et 17 dans les produits en croix plutôt qu'une valeur calculée (risque d'erreur).

5 ** 1. Un pot de peinture de 4 L permet en moyenne de recouvrir une surface de 25 m². Quelle surface peut-on peindre avec un pot de 10 L de cette même peinture ? 14 L ? Quelle quantité de peinture faut-il prévoir pour peindre une surface de 75 m²?

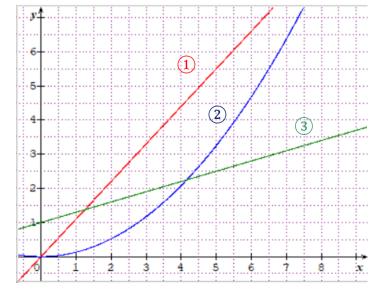
Quantité de peinture (L)	4 +	10	14	4 × 3 = 12	
Surface peinte (m²)	25	62,5	25 + 62,5 = 87,5	75 (25 × 3)	
$\frac{25 \times 10}{4} = 62,5$					

10 L permet de peindre 62,5 m²; 14 L permet de peindre 87,5 m²; et 12 L sont nécessaires pour peindre 75 m².

2. Camille achète du tissu pour confectionner des rideaux. Le prix est proportionnel à la longueur de tissu ; 6 m de tissu sont vendus 40,50 €. Calcule le prix de 4,40 m de ce tissu puis calcule la longueur de tissu que l'on peut acheter pour 64,80 €.

Longueur de tissu (m)	6	4,40	9,6
Prix (€)	40,50	29,7	64,80
	$4,40 \times 40,5$	$\frac{60}{} = 29,7$	$\frac{6 \times 64,80}{40.50} = 9$

4,40 m de tissu coûtent 29,70 €; on peut acheter 9,6 m de tissu pour 64,80 €.


3. Un robinet laisse couler 100 L en 8 min. En combien de temps ce robinet permettra de remplir une cuve de 425 L d'eau ?

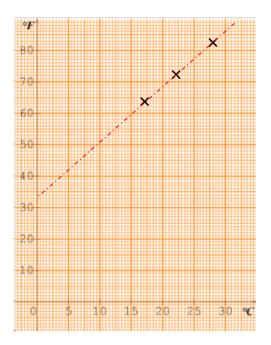
Quantité d'eau (L)	100	425
Durée (min)	8	34

$$\frac{8\times425}{100}=34$$

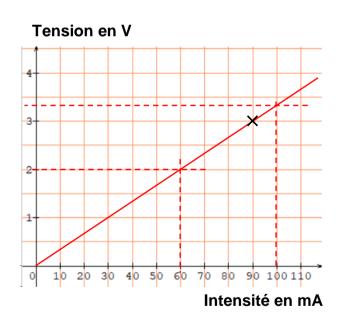
Il faut 34 min pour remplir la cuve.

63** On a représenté graphiquement trois situations. Pour chacune d'elle, indique s'il s'agit d'une situation de proportionnalité ; justifie.

- 1 est une situation de proportionnalité car c'est une droite qui passe par l'origine du repère.
- ② n'est pas une situation de proportionnalité car ce n'est pas une droite.
- ③ n'est pas une situation de proportionnalité car la droite ne passe pas par l'origine du repère.


** On a relevé des températures avec deux thermomètres, l'un en degrés Celsius (°C) et l'autre en degrés Fahrenheit (°F), unité notamment utilisée aux Etats-Unis.

Voici les résultats :


Température en °C	17	22	28
Température en °F	63	72	82

- a. Placer ces renseignements sur le graphique cicontre :
- b. D'après le graphique, peut-on dire que les températures en degrés Celsius et en degrés Fahrenheit sont proportionnelles ?

Non, les points placés sont alignés mais sur une droite qui ne passe pas par l'origine du repère.

83** On a relevé des mesures dans un circuit électrique : pour une intensité de 90 mA, on a mesuré une tension de 3V.

a. Comment s'appelle l'axe horizontal sur lequel est indiquée l'intensité et l'axe vertical sur lequel est indiquée la tension ?

L'axe horizontal est l'axe des abscisses et l'axe vertical est l'axe des ordonnées

b. Sachant que, dans ce circuit, l'intensité et la tension sont <u>proportionnelles</u>, trace le graphique de cette situation.

- c. Utilise le graphique pour lire approximativement (indique les traits de lecture en pointillés) : la tension pour une intensité de 100 mA : environ 3,4 \lor
 - l'intensité pour une tension de 2 V : environ 60 mA
- d. Reprends la question b. par le calcul.

Intensité (mA)	90	100	2 × 30 = 60	: 30
Tension (V)	3	100 : 30 ≈ 3,33	2	

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices 4ème Mathématiques : Gestion des données Proportionnalité Caractériser graphiquement la proportionnalité - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• Proportionnalité et représentation graphique – 4ème – Exercices avec les corrigés

Découvrez d'autres exercices en : 4ème Mathématiques : Gestion des données Proportionnalité Caractérise

• Caractériser graphiquement la proportionnalité - 4ème - Révisions - Exercices avec correction

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices 4ème Mathématiques : Gestion des données Proportionnalité Calculer une quatrième proportionnelle PDF à imprimer
- Exercices 4ème Mathématiques : Gestion des données Proportionnalité Proportionnalité PDF à imprimer
- Exercices 4ème Mathématiques : Gestion des données Proportionnalité Revoir la proportionnalité PDF à imprimer
 - Exercices 4ème Mathématiques : Gestion des données Proportionnalité Vitesses PDF à imprimer
 - Exercices 4ème Mathématiques : Gestion des données Proportionnalité Échelles PDF à imprimer

Besoin d'approfondir en : 4ème Mathématiques : Gestion des données Proportionnalité Caractériser graphic

- <u>Cours 4ème Mathématiques : Gestion des données Proportionnalité Caractériser graphiquement la proportionnalité</u>
- Evaluations 4ème Mathématiques : Gestion des données Proportionnalité Caractériser graphiquement la proportionnalité
- <u>Séquence / Fiche de prep 4ème Mathématiques : Gestion des données Proportionnalité Caractériser graphiquement la proportionnalité</u>