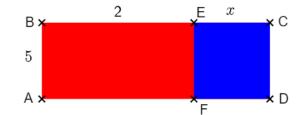
Développer et factoriser une expression littérale


Correction

Exercices

1 * Pour chacune des expressions, repasse en rouge la dernière opération à effectuer et déduis-en s'il s'agit d'une forme développée ou factorisée.

a. 3 x (x + 2) : forme factorisée.	b. 2 × x + 3 : forme développée.
c. 8x – 7 : forme développée.	d. $7 \times (x - 8)$: forme factorisée.
e. 9(x + 1) × (2x – 1) : forme factorisée.	f. x ² + 3x – 2 : forme développée.

- 2* On s'intéresse à la figure ci-contre.
- 1. Donner l'expression réduite des aires du rectangle rouge et celle du rectangle bleu.

Rouge: $5 \times 2 = 10$

Bleu: $5 \times x = 5x$

2. En déduire une expression développée de l'aire du rectangle ABCD.

L'aire de ABCD est donc : 5x + 10.

3. Exprimer la longueur BC en fonction de x puis donner une forme factorisée de l'aire du rectangle ABCD.

On a BC = x + 2 et l'on déduit l'aire de ABCD : $5 \times (x + 2)$.

4. En déduire une égalité entre l'expression développée et l'expression factorisée.

On a finalement : 5(x + 2) = 5x + 10.

3* Complète les développements suivants.

$$A = 3 \times (x + 1) = 3 \times x + 3 \times 1 = 3x + 3$$

$$B = 4 \times (2x + 3) = 4 \times 2x + 4 \times 3 = 8x + 12$$

$$C = 2 \times (x - 6) = 2 \times x - 2 \times 6 = 2x - 12$$

$$D = 5 \times (3x - 4) = 5 \times 3x - 5 \times 4 = 15x - 20$$

4 ** Donne la forme développée et réduite des expressions suivantes.

1.
$$2(x-1) = 2 \times x - 2 \times 1 = 2x - 2$$

2.
$$6(x-5) = 6 \times x - 6 \times 5 = 6x - 30$$

3.
$$7(3x + 4) = 7 \times 3x + 7 \times 4 = 21x + 28$$

4.
$$1.5(2x - 10) = 1.5 \times 2x - 1.5 \times 10 = 3x - 15$$

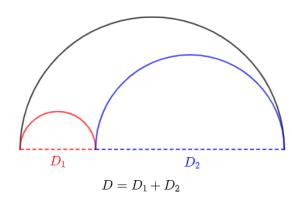
5.
$$9(5x - 11) = 9 \times 5x - 9 \times 11 = 45x - 99$$

5 ** 1. Complète la phrase de cours.

Factoriser une expression littérale, c'est transformer une somme ou une différence en un produit. C'est l'inverse du développement! Pour factoriser, on utilise la méthode du facteur commun.

2. Trouve et fais apparaître le facteur commun pour ces expressions comme sur l'exemple.

$$3x + 6$$
: Le facteur commun est 3: $3x + 6 = 3 \times x + 3 \times 2$


- **1.** 5x + 25: le facteur commun est $5: 5x + 25 = 5 \times x + 5 \times 5$.
- **2.** 14x + 7: le facteur commun est 7: $14x + 7 = 7 \times 2x + 7 \times 1$.
- 3. 9x + 45: le facteur commun est 9: $9x + 45 = 9 \times x + 9 \times 5$.
- 6 ** Complète la factorisation de la somme en suivant les étapes.
- A = 2x + 14 Je repère le facteur commun qui est 2.
- $A = 2 \times x + 2 \times 7$ Je fais apparaitre ce facteur commun.
- $A = 2 \times (x + 7)$ Je mets 2 en facteur et j'écris entre parenthèses les 2 autres facteurs.
- A = 2(x + 7) Je réduis. A est désormais le produit de 2 et de (x + 7).
- 7** 1. Factorise les 2 sommes suivantes. On pourra s'aider des étapes de l'exercice précédent.

$$A = 3x + 18$$
 $B = 15x + 3$
 $A = 3 \times x + 3 \times 6$
 $B = 3 \times 5 \times x + 3 \times 1$
 $A = 3 \times (x + 6)$
 $B = 3 \times (5 \times x + 1)$
 $A = 3(x + 6)$
 $B = 3(5x + 1)$

- 8*** On a tracé 3 demi-cercles : un rouge de diamètre D₁, un bleu de diamètre D₂ et un noir de diamètre D₁ + D₂.
- 1. Ecris les expressions donnant les périmètres des demicercles bleus et rouges.

Demi-cercle rouge :
$$P = \pi \times D_1$$
 Demi-cercle bleu : $P = \pi \times D_2$

2. Donne l'expression de la somme de ces 2 périmètres puis factorise la par pi.

Cette somme vaut :
$$\pi \times D_1 + \pi \times D_2 = \pi \times (D_1 + D_2) = \pi(D_1 + D_2)$$
.

3. Donne la valeur du diamètre du demi-cercle noir puis l'expression de son périmètre.

Son diamètre est
$$D_1 + D_2$$
 et son périmètre vaut : $P = \pi \times (D_1 + D_2) = \pi(D_1 + D_2)$.

4. Quel est le plus grand entre le périmètre noir et la somme du périmètre rouge et bleu ?

On a trouvé que les 2 peuvent s'écrire $P = \pi(D_1 + D_2)$: ils sont donc égaux.

Pass Education

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices 5ème Mathématiques : Nombres et calculs Calcul littéral - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

• <u>Développer et factoriser une expression littérale – 5ème – Exercices avec les corrigés</u>

Découvrez d'autres exercices en : 5ème Mathématiques : Nombres et calculs Calcul littéral

- Synthèse sur le calcul littéral 5ème Exercices avec les corrigés
- Simplifier une expression littérale 5ème Exercices avec les corrigés
- Expression littérale 5ème Exercices avec les corrigés
- Tester une égalité 5ème Exercices avec correction
- Produire, utiliser une expression littérale 5ème Calcul littéral Exercices avec correction

Les exercices des catégories suivantes pourraient également vous intéresser :

- Exercices 5ème Mathématiques : Nombres et calculs Calcul littéral Produire une expression littérale PDF à imprimer
- Exercices 5ème Mathématiques : Nombres et calculs Calcul littéral Tester une égalité PDF à imprimer
- Exercices 5ème Mathématiques : Nombres et calculs Calcul littéral Programme de calcul PDF à imprimer
- Exercices 5ème Mathématiques : Nombres et calculs Calcul littéral Simplifier une expression littérale PDF à imprimer
- Exercices 5ème Mathématiques : Nombres et calculs Calcul littéral Développement Réduction PDF à imprimer

Besoin d'approfondir en : 5ème Mathématiques : Nombres et calculs Calcul littéral

- Cours 5ème Mathématiques : Nombres et calculs Calcul littéral
- Evaluations 5ème Mathématiques : Nombres et calculs Calcul littéral
- <u>Vidéos pédagogiques 5ème Mathématiques : Nombres et calculs Calcul littéral</u>
- Vidéos interactives 5ème Mathématiques : Nombres et calculs Calcul littéral
- Séquence / Fiche de prep 5ème Mathématiques : Nombres et calculs Calcul littéral