Avancement d'une réaction chimique - Correction

Exercice 01: Corriger les erreurs

En présence d'ions OH^- , les ions Fe^{2+} forment un précipité vert d'hydroxyde de fer II $Fe(OH)_2$. Initialement, le système chimique contient 0.12 mol d'ions Fe^{2+} et 0.20 mol d'ions OH^- .

Refaire le tableau d'avancement ci-dessous et corrigez-le. Expliquer comment on procède.

		$\operatorname{Fe^{2+}}_{(aq)}$ +	$20H^{-}_{(aq)} \rightarrow$	Fe(OH) _{2 (s)}	
	Avancement				
	(m mol)	Quantités de matière (mol)			
Etat initial	0	0.12	0.40	0	
En cours de transformation	х	0.12 + x	0.20 - x	х	
Etat final	x_{max}	$2 X 10^{-3} + x_{max}$	$0.4 - 2x_{max}$	$2x_{max}$	

		Fe ²⁺ (aq) +	$20 \mathrm{H}^{-}_{(aq)} \longrightarrow$	Fe(OH) _{2 (s)}	
	Avancement				
	(mol)	Quantités de matière (mol)			
Etat initial	0	0.12	0.20	0	
En cours de transformation	x	0.12 - x	0.20 - 2x	x	
Etat final	x_{max}	$0.12 - x_{max}$	$0.2 - 2x_{max}$	x_{max}	

Les nombres placés devant l'avancement x sont égaux aux nombres stœchiométriques de l'équation. Ils sont précédés d'un signe (-) pour les réactifs et d'un signe (+) pour les produits. L'unité choisie pour les quantités de matière est le mol, et pas le mmol.

Exercice 02: Etat d'avancement d'une réaction

L'équation chimique de la réaction chimique entre l'aluminium et le souffre s'écrit :

$$2Al_{(s)} + 3S_{(s)} \rightarrow Al_2S_{3(s)}$$

Calculer la quantité de matière de souffre qu'il faut mélanger avec 0.15 mol d'aluminium pour que le mélange initial soit stœchiométrique.

		2Al _(s) +	$3S_{(s)} \rightarrow$	$Al_2S_{3(s)}$	
	Avancement				
	(mol)	Quantités de matière (mol)			
Etat initial	0	0.15	$n_i(S)$	0	
En cours de transformation	x	0.15 - 2x	$n_i(S) - 3x$	x	
Etat final	x_{max}	$0.15-2x_{max}$	$n_i(S) - 3x_{max}$	x_{max}	

Lorsque le mélange initial est stœchiométrique, les quantités des réactifs à l'état final sont nulles.

$$0.15 - 2x_{max} = 0$$
; $x_{max} = \frac{0.15}{2} = 0.075 \, mol$

$$n_i(S) - 3x_{max} = 0$$
; $n_i(S) = 3x_{max} = 3 \times 0.75 = 0.225 \text{ mol.}$

Exercice 03: Etat d'avancement d'une réaction

On plonge une masse m=1.3 g de tournure de cuivre dans un volume V=20 mL d'une solution de nitrate d'argent telle que la concentration molaire en ions argent est $c=8 \times 10^{-2}$ mol.L⁻¹. La solution, initialement incolore, bleuit, et un dépôt gris d'argent métallique se dépose sur le cuivre. L'équation de la réaction est : $Cu_{(s)} + 2Ag^{+}_{(ag)} \rightarrow Cu^{2+}_{(ag)} + 2Ag_{(s)}$

Données:
$$M(Cu) = 63.5 g. mol^{-1}$$
. $M(Ag) = 107.9 g. mol^{-1}$.

a. Calculer les quantités initiales de réactifs.

$$\begin{split} n_i(Cu) &= \frac{m}{M(Cu)} = \frac{1.3}{63.5} = 2 \, X \, 10^{-2} \, mol. \\ n_i(Ag) &= cV = 8 \, X \, 10^{-2} X \, 20 \, X \, 10^{-3} = 1.6 \, X \, 10^{-3} \, mol. \end{split}$$

b. Etablir le tableau d'avancement de la réaction.

		Cu _(s) +	$2Ag^{+}_{(aq)} \rightarrow$	Cu ²⁺ (aq) +	$2Ag_{(s)}$
	Avancement				
	(mol)	Quantités de matière (mol)			
Etat initial	0	$2 X 10^{-2}$	$1.6 X 10^{-3}$	0	0
En cours de transformation	х	$2 X 10^{-2} - x$	$1.6 X 10^{-3} - 2x$	x	2x
Etat final	x_{max}	$2 X 10^{-2} - x_{max}$	$1.6 X 10^{-3} - 2x_{max}$	x_{max}	$2x_{max}$

c. Déterminer le réactif limitant.

On suppose que Cu soit le réactif limitant : $x_{max} = 2 X 10^{-2} mol$.

On suppose que Ag⁺ soit le réactif limitant : $x_{max} = \frac{1.6 \times 10^{-3}}{2} = 8 \times 10^{-4} \text{ mol.}$

L'avancement maximal est la plus petite de ces deux valeurs :

 $x_{max} = 8 X 10^{-4} mol$ et les ions Ag⁺ constituent le réactif limitant.

d. Déterminer la masse maximale d'argent que l'on peut espérer obtenir.

$$n_f(Ag) = 2x_{max} = 1.6 X 10^{-3} mol.$$

La masse d'argent formé est $m(Ag) = n_f(Ag)X M(Ag) = 1.6 X 10^{-3} X 107.9 = 0.17 g$

Pass Education

Ce document PDF gratuit à imprimer est issu de la page :

• Exercices Première - 1ère Physique - Chimie : Couleurs et images Réaction chimique et dosage Avancement d'une réaction chimique - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cet exercice avec un énoncé vierge

Réaction chimique - Première - Exercices corrigés

Les exercices des catégories suivantes pourraient également vous intéresser :

• Exercices Première - 1ère Physique - Chimie : Couleurs et images Réaction chimique et dosage Dosage des solutions colorées par étalonnage - PDF à imprimer

Besoin d'approfondir en : Première - 1ère Physique - Chimie : Couleurs et images Réaction chimique et dos

• <u>Cours Première - 1ère Physique - Chimie : Couleurs et images Réaction chimique et dosage</u> <u>Avancement d'une réaction chimique</u>