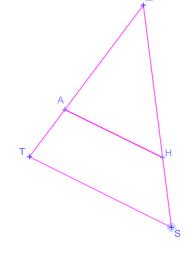
Chapitre 16 : Théorème de Thalès

Évaluation 1 : Calculer des longueurs : Corrigé

Compétences évaluées	Maîtrise insuffisante	Maîtrise fragile	Maîtrise satisfaisante	Très bonne maîtrise
Connaitre les hypothèses du théorème de Thalès.				
Appliquer le théorème de Thalès pour des triangles emboités.				
Déterminer une longueur à l'aide du théorème de Thalès.				

Exercice N°1

Dans la figure ci-contre, les droites (AT) et (HS) se coupent en M et les droites (AH) et (TS) sont parallèles.


Justifier l'utilisation du théorème de Thalès.

Quelles égalités peut-on écrire ?

Le point A appartient au segment [MT]. Le point H appartient au segment [MS]. Les droites (AH) et (TS) sont parallèles.

D'après le théorème de Thalès on peut écrire :

$$\frac{MA}{MT} = \frac{MH}{MS} = \frac{AH}{TS}$$

Exercice N°2

Dans la figure ci-contre, les droites (AT) et (HS) se coupent en M et les droites (AH) et (TS) sont parallèles.

Démontrer que les droites (RM) et (PE) sont parallèles.

Justifier l'utilisation du théorème de Thalès.

On donne:

•
$$IR = 6 \text{ cm}$$
 $IP = 9.6 \text{ cm}$ $RM = 6.25 \text{ cm}$

Calculer PE.

Les droites (RM) et (PE) sont toutes deux perpendiculaires à la droite (IP), elles sont donc parallèles entre elles.

Le point *R* appartient au segment [*IP*]. Le point *M* appartient au segment [*IE*].

D'après le théorème de Thalès, on peut écrire :

$$\frac{IR}{IP} = \frac{RM}{PE} = \frac{IM}{IE}$$

$$\frac{6}{9.6} = \frac{6,25}{PF}$$

$$\frac{IR}{IP} = \frac{RM}{PE} = \frac{IM}{IE}$$
 $\frac{6}{9.6} = \frac{6.25}{PE}$ d'où $PE = \frac{6.25 \times 9.6}{6} = 10$

PE = 10 cm.

Exercice N°3

Observer la figure ci-contre :

On sait que les droites (OQ) et (NP) sont parallèles et on donne :

$$QO = 4 cm$$
 $MP = 11,4 cm$ $NP = 6 cm$ $MQ = 7,2 cm$.

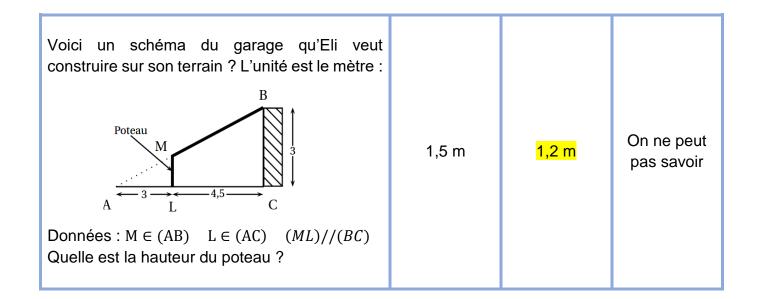
Calculer MO et MN.

Les droites (0Q) et (NP) sont parallèles.

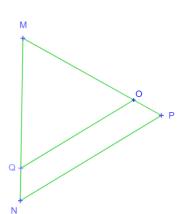
Le point Q appartient au segment [MN]. Le point Q appartient au segment [MP].

Donc d'après le théorème de Thalès on a :

$$\frac{MQ}{MN} = \frac{MO}{MP} = \frac{OQ}{NP}$$

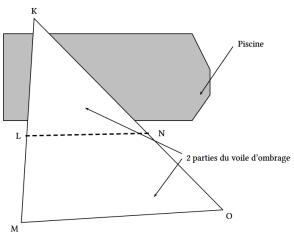

$$\frac{7,2}{MN} = \frac{MO}{11,4} = \frac{4}{6}$$

$$MN = \frac{7,2 \times 6}{4} = 10,8 \ cm$$


$$MO = \frac{11,4\times4}{6} = 7,6 \ cm$$

Exercice N°4 (D'après brevet)

Quelle est la bonne réponse ?



$$ML = \frac{AL \times BC}{AC} = \frac{3 \times 3}{7,5} = 1,2$$

Exercice N°5 (D'après brevet).

Une personne décide d'installer, au-dessus de la piscine, une grande voile d'ombrage qui se compose de deux parties détachables reliées par une fermeture éclair comme le montre le schéma ci-dessous qui n'est pas à l'échelle.

Données:

- La première partie couvrant une partie de la piscine est représentée par le triangle *KLN*.
- La deuxième partie est représentée par le trapèze *LMON* de bases [*LN*] et [*MO*].
- La fermeture éclair est représentée par le segment [LN].
- Les poteaux, soutenant la voile d'ombrage, positionnés sur les points K, L et M, sont alignés.
- Les poteaux, soutenant la voile d'ombrage, positionnés sur les points K, N et 0, sont alignés.

On donne

KL = 5 m LM = 3.5 m NO = 5.25 m MO = 10.2 m

Question:

Calculer la longueur de la fermeture éclair.

Longueur de KM:

$$KM = KL + LM = 5 + 3.5 = 8.5 \text{ m}.$$

Le point L appartient au segment [KM].

Le point N appartient au segment [KO].

Les droites (LN) et (M0) sont parallèles.

D'après le théorème de Thalès, on a :

$$\frac{KL}{LM} = \frac{KN}{KO} = \frac{LN}{MO}$$

$$\frac{5}{8.5} = \frac{LN}{10.2}$$

$$LN = \frac{5 \times 10, 2}{8, 5} = 6$$

$$LN = 6 \text{ m}$$

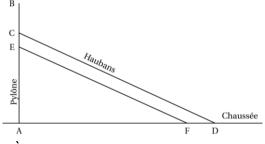
Exercice N°6

Le viaduc de Millau est un pont franchissant la vallée du Tarn, dans le département de l'Aveyron, en France. Il est constitué de 7 pylônes verticaux équipés chacun de 22 câbles appelés haubans.

Le schéma ci-dessous, qui n'est pas à l'échelle, représente un pylône et deux de ses haubans.

On dispose des informations suivantes :

$$AB = 89 \text{ m}$$


$$AC = 76 \text{ m}$$

$$AD = 154 \text{ m}$$

$$FD = 12 \text{ m}$$

$$EC = 5 \,\mathrm{m}$$

Les haubans [EF] et [CD] sont parallèles.

Calculer la longueur du hauban [EF]. Arrondir au mètre près.

On suppose que le pylône est vertical et donc, perpendiculaire à la chaussée.

Calcul de CD.

Appliquons le théorème de Pythagore au triangle *AEF*, rectangle en *A*.

$$CD^2 = AC^2 + AD^2$$

$$CD^2 = 76^2 + 154^2$$

$$CD^2 = 5776 + 23716$$

$$CD^2 = 29492$$

$$CD \approx 172 \text{ m}$$

Longueur de AE.

$$AE = AC - EC$$

$$AE = 76 - 5$$

$$AE = 71 \text{ m}$$

Calcul de EF.

Le point E appartient au segment [AC].

Le point F appartient au segment [AD].

Les droites (EF) et (CD) sont parallèles.

D'après le théorème de Thalès, on a :

$$\frac{AE}{AC} = \frac{AF}{AD} = \frac{EF}{CD}$$

$$\frac{71}{76} = \frac{EF}{172}$$

$$EF = \frac{71 \times 172}{76} = 160,68$$

$$EF = 161 \, m$$

Ce document PDF gratuit à imprimer est issu de la page :

• Evaluations 4ème Mathématiques : Géométrie Théorème de Thalès - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cette évaluation avec un énoncé vierge

• <u>Calculer des longueurs - 4ème - Evaluation, bilan, contrôle avec la correction sur le Théorème de Thalès</u>

Découvrez d'autres évaluations en : 4ème Mathématiques : Géométrie Théorème de Thalès

- Parallélisme (Théorème de Thalès) 4ème Evaluation avec la correction
- <u>Calcul de longueur (Théorème de Thalès) 4ème Evaluation avec la correction</u>
- Reconnaître des parallèles 4ème Evaluation, bilan, contrôle avec la correction sur le Théorème de Thalès

Les évaluations des catégories suivantes pourraient également vous intéresser :

- Evaluations 4ème Mathématiques : Géométrie Théorème de Thalès Calculer des longueurs PDF à imprimer
- Evaluations 4ème Mathématiques : Géométrie Théorème de Thalès Reconnaître des parallèles PDF à imprimer

Besoin d'approfondir en : 4ème Mathématiques : Géométrie Théorème de Thalès

- Cours 4ème Mathématiques : Géométrie Théorème de Thalès
- Exercices 4ème Mathématiques : Géométrie Théorème de Thalès
- Séquence / Fiche de prep 4ème Mathématiques : Géométrie Théorème de Thalès
- Cartes mentales 4ème Mathématiques : Géométrie Théorème de Thalès