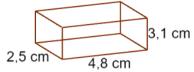
Volume des solides usuels

Correction


Evaluation

Evaluation des compétences	Α	EA	NA
Je sais calculer le volume des solides usuels.			

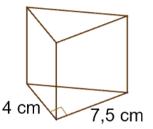
1) Calcule le volume du pavé droit ci-contre.

On a V = L \times I \times h = 4,8 \times 2,5 \times 3,1 = 37,2 cm³.

2) Si les dimensions de ce pavé sont multipliées par 2, par combien est multiplié son volume ?

On a dans ce cas L = $4.8 \times 2 = 9.6 \text{ cm}$, I = $2.5 \times 2 = 5 \text{ cm}$ et h = $3.1 \times 2 = 6.2 \text{ cm}$.

Dans ce cas $V = 9.6 \times 5 \times 6.2 = 297.6 \text{ cm}^3$.

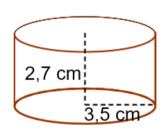

Le volume a été multiplié par 297,6 : 37,2 = 8.

2 Quel doit être la hauteur de ce prisme droit pour que son volume soit de 52,5 cm³?

Calculons l'aire d'une base : $A_{base} = \frac{4 \times 7,5}{2} = 15 \text{ cm}^2$.

Puisque V = $A_{base} \times h$, on souhaite avoir $52,5 = 15 \times h$.

La hauteur doit être de 52,5 : 15 = 3,5 cm.



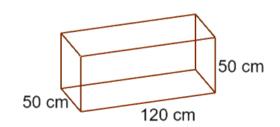
3 Le volume du cylindre suivant est-il supérieur ou inférieur à 100 cm³?

On a :
$$V = A_{base} \times h = \pi \times R^2 \times h$$

$$=\pi \times 3,5^2 \times 2,7 \approx 103,91 \text{ cm}^3$$
 au centième

Son volume est donc supérieur à 100 cm³.

4 Thibaut souhaite acheter un aquarium ayant une contenance d'au moins 300 L pour ses poissons. Il se demande si le modèle suivant est adapté. Qu'en penses-tu?


Calculons son volume : $V = L \times I \times h = 120 \times 50 \times 50$

 $= 300 \ 000 \ cm^3$.

Convertissons ce volume en litres :

 $300\ 000\ cm^3 = 300\ dm^3 = 300\ L$

Ce modèle sera donc adapté!

Un maçon doit construire une colonne de forme cylindrique, de 90 cm de rayon et 4 m de hauteur. Il doit utiliser 400 kg de béton par mètre cube. Quelle masse de béton doit-il prévoir ?

Calculons le volume du cylindre avec r = 0.9 m et h = 4 m:

 $V = A_{base} \times h = \pi \times r^2 \times h = \pi \times 0.9^2 \times 4 \approx 10.18 \text{ cm}^3$ au centième

Il devra donc utiliser $400 \times 10{,}18 = 4\,072$ kg de béton pour construire cette colonne.

Ce document PDF gratuit à imprimer est issu de la page :

• Evaluations 5ème Mathématiques : Grandeurs / Mesures - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cette évaluation avec un énoncé vierge

• Volume des solides usuels - 5ème - Evaluation avec la correction

Découvrez d'autres évaluations en : 5ème Mathématiques : Grandeurs / Mesures

- Convertir et calculer avec des durées 5ème Evaluation avec la correction
- Volume des solides complexes 5ème Evaluation avec la correction
- Convertir des unités de volume et de contenance 5ème Evaluation avec la correction
- Convertir des unités d'aire 5ème Evaluation avec la correction
- Convertir des unités de longueur 5ème Evaluation avec la correction

Les évaluations des catégories suivantes pourraient également vous intéresser :

- Evaluations 5ème Mathématiques : Grandeurs / Mesures Temps et durée heure, minute, seconde PDF à imprimer
 - Evaluations 5ème Mathématiques : Grandeurs / Mesures Périmètre PDF à imprimer
 - Evaluations 5ème Mathématiques : Grandeurs / Mesures Longueur cm, m, km PDF à imprimer
 - Evaluations 5ème Mathématiques : Grandeurs / Mesures Aires PDF à imprimer

Besoin d'approfondir en : 5ème Mathématiques : Grandeurs / Mesures

- Cours 5ème Mathématiques : Grandeurs / Mesures
- Exercices 5ème Mathématiques : Grandeurs / Mesures
- <u>Vidéos pédagogiques 5ème Mathématiques</u>: <u>Grandeurs / Mesures</u>
- Vidéos interactives 5ème Mathématiques : Grandeurs / Mesures
- Séquence / Fiche de prep 5ème Mathématiques : Grandeurs / Mesures