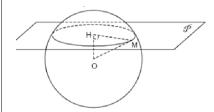
# Sections de solides

#### Correction


## Evaluation



| Evaluation des compétences                                         | Α | EA | NA |
|--------------------------------------------------------------------|---|----|----|
| Je connais la nature et sais représenter la section d'un solide.   |   |    |    |
| J'utilise les propriétés des sections pour résoudre des problèmes. |   |    |    |

### 🚺 Cet exercice est un QCM. Pour chaque ligne, choisis la/les bonnes réponses :

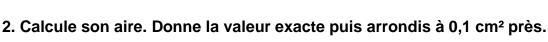
| La section d'un cylindre par un plan parallèle à sa base est :                                  | une réduction<br>de la base | un rectangle       | un parallélo-<br>gramme | un disque          |
|-------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-------------------------|--------------------|
| Un disque a une aire de 80 cm², son rayon est alors divisé par 2, l'aire du disque réduit est : | 5 cm²                       | 10 cm <sup>2</sup> | 20 cm <sup>2</sup>      | 40 cm <sup>2</sup> |
| La section d'un pavé par un plan parallèle à une arête est nécessairement :                     | un losange                  | un rectangle       | un disque               | un triangle        |

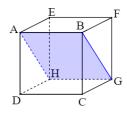


Pour répondre à la question suivante, observer la figure :

- O est le centre de la sphère,
- le plan P coupe la sphère suivant un cercle de centre H,
- M est un point de ce cercle.

On peut écrire l'égalité :


$$OH^2 = OM^2 + HM^2$$


$$OH^2 = OM^2 + HM^2$$
  $OM^2 = OH^2 + MH^2$ 

$$\sin \widehat{HMO} = \frac{OH}{MO}$$

$$\cos \widehat{HMO} = \frac{OH}{MO}$$

- On sectionne un cube de côté 4 cm comme sur la figure ci-contre.
- 1. Quelle est la nature de la section ? C'est un rectangle.





La largeur est AB = 4 cm; déterminons sa longueur BG.

BFGC est une face du cube, donc un carré, donc BFG est un triangle rectangle isocèle en F.

D'après le théorème de Pythagore :  $BG^2 = BF^2 + FG^2$ 

$$BG^2 = 4^2 + 4^2 = 32$$
 donc  $BG = \sqrt{32}$ 

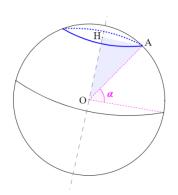
$$A_{ABGF} = l \times L = 4 \times \sqrt{32} = 4\sqrt{32}$$
 (valeur exacte) ou  $16\sqrt{2}$  (calculatrice)  $\approx 22,6$  cm<sup>2</sup>

Un verre à cocktail de forme conique de contenance 20 cL est rempli à mihauteur par un cocktail de jus de fruits. Quel est le volume de jus de fruits ?



Il s'agit d'une réduction de cône.

Par rapport à la hauteur, le coefficient de réduction est  $\frac{1}{2}$ .


Donc le volume est multiplié par  $\left(\frac{1}{2}\right)^3 = \frac{1}{8}$ . Le volume de jus de fruits est  $20 \times \frac{1}{8} = 2$ , 5 cL

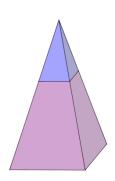
On considère la Terre comme une sphère de centre O et de rayon R = 6400 km.

On étudie le cercle polaire Arctique, qui est la section de cette sphère par un plan comme représenté ci-contre.

1. Sachant que sa latitude  $\alpha$  est de 66° Nord, en déduire la mesure de l'angle HOA.

$$\widehat{HOA} = 90^{\circ} - \alpha = 24^{\circ}$$




2. Prouve que le rayon HA du cercle polaire est d'environ 2 600 km.

OHA est un triangle rectangle en H, donc 
$$\sin \widehat{HOA} = \frac{HA}{OA}$$
  
 $\sin(24) = \frac{HA}{6400}$  donc  $HA = \sin(24) \times 6400 \approx 2603$  km ou environ 2600 km

3. Détermine la longueur du cercle polaire, à la centaine de km près.

Il s'agit du périmètre du cercle : diamètre  $\times \pi = 2 \times 2600 \times \pi \approx 16300$  km.

La bouteille de parfum ci-contre a la forme d'une pyramide de base carrée de côté 7 cm et de hauteur 12 cm. La section à 4 cm du sommet, parallèle à la base, constitue le bouchon. La pyramide tronquée contient le parfum. Avec l'épaisseur du verre dont elle est faite, 80% de son volume peut contenir du parfum.



Vérifie la contenance de parfum indiquée, de 150 mL.

Notons V<sub>1</sub> le volume de la grande pyramide de base 7 cm et V<sub>2</sub> le volume du bouchon.

$$V_1 = B \times \frac{h}{3} = c \times c \times \frac{h}{3} = 7 \times 7 \times \frac{12}{3} = 196 \text{ cm}^3$$

La petite pyramide, obtenue par section, est une réduction ; sa hauteur est 4 cm alors que la hauteur initiale est 12 cm.

Le coefficient de réduction est  $\frac{4}{12} = \frac{1}{2}$ .

Si les longueurs sont multipliées par 
$$\frac{1}{3}$$
, les volumes sont multipliés par  $\left(\frac{1}{3}\right)^3 = \frac{1}{27}$   $V_2 = V_1 \times \frac{1}{27} \approx 7,26 \text{ cm}^3$ 

Si les longueurs sont multipliées par  $\frac{1}{3}$ , les volumes sont multipliées par  $\left(\frac{1}{3}\right)^3 = \frac{1}{27}$ . Donc pour le côté de la base :  $7 \times \frac{1}{3} = \frac{7}{3} \approx 2,33$  cm  $V_2 = V_1 \times \frac{1}{27} \approx 7,26$  cm<sup>3</sup>  $V_2 = c \times c \times \frac{h}{3} = 2,33 \times 2,33 \times \frac{4}{3} \approx 7,24$  cm<sup>3</sup>

Le volume de la pyramide tronquée est :

$$V = V_1 - V_2 = 196 - 7,26$$
 (ou 7,24) = 188,74 **ou** 188,76 cm<sup>3</sup>

Le volume pour le parfum est :  $V \times \frac{80}{100} \approx 151 \ cm^3 = 151 \ mL$   $(1 \ cm^3 = 0.001 \ dm^3 = 0.001 \ L = 1 \ mL)$ La contenance indiquée de 150 mL est juste.



#### Ce document PDF gratuit à imprimer est issu de la page :

• Evaluations 3ème Mathématiques : Géométrie - PDF à imprimer

#### Le lien ci-dessous vous permet de télécharger cette évaluation avec un énoncé vierge

• Sections de solides - 3ème - Evaluation avec les corrigés

#### Découvrez d'autres évaluations en : 3ème Mathématiques : Géométrie

- Les solides (Rappel) 3ème Evaluation avec les corrigés
- Sphère et boule: repérage 3ème Evaluation avec les corrigés
- Synthèse sur le théorème de Pythagore et la trigonométrie 3ème Evaluation avec la correction
- Réciproque de Thalès et parallèles 3ème Evaluation avec la correction
- Calcul de longueur 3ème Evaluation avec la correction sur le théorème de Thalès

#### Les évaluations des catégories suivantes pourraient également vous intéresser :

- Evaluations 3ème Mathématiques : Géométrie Polygones PDF à imprimer
- Evaluations 3ème Mathématiques : Géométrie Solides et patrons PDF à imprimer
- Evaluations 3ème Mathématiques : Géométrie Théorème de Thalès PDF à imprimer
- Evaluations 3ème Mathématiques : Géométrie Théorème de Pythagore PDF à imprimer
- Evaluations 3ème Mathématiques : Géométrie Géométrie plane PDF à imprimer

#### Besoin d'approfondir en : 3ème Mathématiques : Géométrie

- Cours 3ème Mathématiques : Géométrie
- Exercices 3ème Mathématiques : Géométrie
- Vidéos pédagogiques 3ème Mathématiques : Géométrie
- Vidéos interactives 3ème Mathématiques : Géométrie
- Séquence / Fiche de prep 3ème Mathématiques : Géométrie