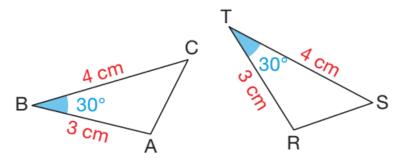
Chapitre 15: Les triangles

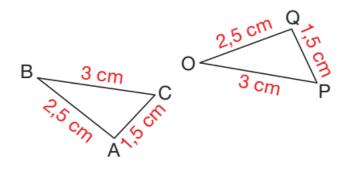
Évaluation 2 : Cas d'égalité des triangles : Corrigé

Compétences évaluées	Maîtrise insuffisante	Maîtrise fragile	Maîtrise satisfaisante	Très bonne maîtrise
Connaître les cas d'égalité des triangles.				
Appliquer les cas d'égalité des triangles pour prouver que deux triangles sont égaux.				
Utiliser des triangles égaux.				

Exercice N°1

Dans chaque situation, quel cas d'égalité faut-il appliquer pour justifier l'égalité des triangles ? Citer alors les sommets homologues.


Si deux triangles ont un angle de même mesure compris entre des côtés deux à deux de même longueur, alors ces deux triangles sont égaux.



B et T

C et S

A et R

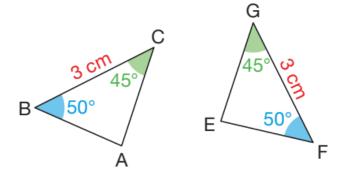
Si deux triangles ont leurs côtés deux à deux de même longueur, alors ces deux triangles sont égaux.

Sommets homologues:

B et *O*

P et C

A et Q

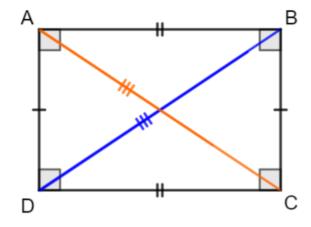

Si deux triangles ont un côté de même longueur et des angles adjacents à ce côté deux à deux de même mesure, alors ces deux triangles sont égaux.

Sommets homologues:

B et F

C et G

A et E


Exercice N°2

ABCD est un rectangle. Que dire des triangles ABC et ADC ? Justifier votre réponse.

Dans un rectangle, les côtés opposés sont égaux ainsi que les diagonales.

Sur le rectangle ci-contre, nous avons alors marqué les codages relatifs au rectangle.

Si deux triangles ont leurs côtés deux à deux de même longueur, alors ces deux triangles sont égaux.

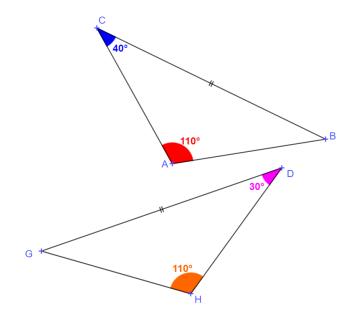
Les triangles ABC et ADC ont leurs côtés deux à deux de même longueur, ils sont égaux.

Exercice N°3

Démontrer que les triangles ABC et DGH sont égaux.

Quel est le sommet homologue à B?

$$\hat{B} = 180^{\circ} - (110^{\circ} + 40^{\circ})$$


$$\widehat{B} = 180^{\circ} - 150^{\circ}$$

$$\widehat{B} = 30^{\circ}$$

$$\hat{G} = 180^{\circ} - (110^{\circ} + 30^{\circ})$$

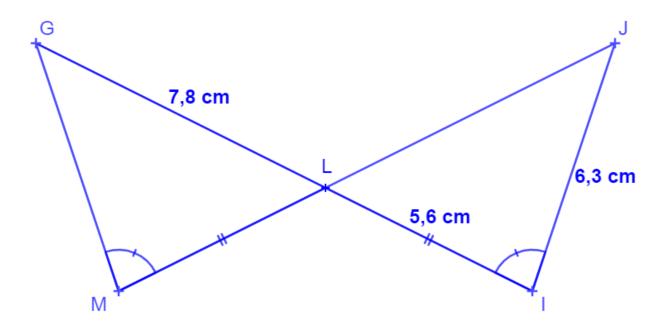
$$\widehat{G} = 180^{\circ} - 140^{\circ}$$

$$\widehat{G} = 40^{\circ}$$

Si deux triangles ont un côté égal compris entre deux angles égaux, ils sont égaux.

Les triangles ABC et DGH ont un côté égal (d'après les codages, BC = DG) compris entre deux angles égaux ($\widehat{D} = \widehat{B}$ et $\widehat{G} = \widehat{C}$); ils sont égaux.

Le sommet homologue au sommet B est donc le sommet D.


Exercice N°4

Observer le nœud papillon de Monsieur Mickey.

Démontrer que les angles \widehat{GLM} et \widehat{JLI} sont égaux.

En déduire que les triangles GLM et JLI sont égaux.

Calculer le périmètre du nœud papillon de Monsieur Mickey.

- Les angles \widehat{GLM} et \widehat{JLI} sont opposés par le sommet ; ils sont égaux.
- D'après les codages, les angles \widehat{AML} et \widehat{LIJ} sont égaux.
- D'après les codages, les côtés [ML] et [LI] sont égaux.

Si deux triangles ont un côté de même longueur et des angles adjacents à ce côté deux à deux de même mesure, alors ces deux triangles sont égaux.

Les triangles GML et JLI ont un côté de même longueur ML = LI et deux angles adjacents à ce côté, de même mesure $\widehat{GLM} = \widehat{JLI}$ et $\widehat{AML} = \widehat{LIJ}$. Ils sont égaux.

Exercice N°5

ABC est un triangle rectangle en B tel que AB = 8.1 cm et BC = 10.8 cm.

MNP est un triangle rectangle en N tel que MN = 10.8 cm et MP = 13.5 cm.

Les triangles ABC et MNP sont-ils égaux ? Si oui, donner les sommets homologues.

Le triangle ABC est rectangle en B.

Son hypoténuse est donc le côté [AC].

$$AC^2 = BA^2 + BC^2$$

$$AC^2 = 8.1^2 + 10.8^2$$

$$AC^2 = 65,61 + 116,64$$

$$AC^2 = 182,25$$

$$AC = \sqrt{182,25} = 13,5$$

$$AC = 13.5 \text{ cm}$$

Le triangle MNP est rectangle en N.

Son hypoténuse est le côté [MP].

$$MP^2 = NM^2 + NP^2$$

$$NP^2 = MP^2 - NM^2$$

$$NP^2 = 13.5^2 - 10.8^2$$

$$NP^2 = 182,25 - 116,64$$

$$NP^2 = 65,61$$

$$NP = \sqrt{65,61} = 8,1$$

$$NP = 8.1 \text{ cm}$$

Si deux triangles ont leurs côtés deux à deux de même longueur, alors ces deux triangles sont égaux.

Les triangles ABC et MNP ont leurs côtés deux à deux de même longueur car, $AB = NP = 8,1 \, \mathrm{cm}$; $BC = MN = 10,8 \, \mathrm{cm}$; $AC = MP = 13,5 \, \mathrm{cm}$; les triangles ABC et MNP sont égaux.

Les sommets homologues sont donc : N et B A et P C et M.

Exercice N°6

[AB] et [CD] sont deux diamètres d'un cercle de centre O. Démontrer que les triangles OAC et OBD sont égaux. En déduire que AC = BD.

D'une part :

- |AB] et [CD] sont deux diamètres.
- 0 est le centre du cercle.

Donc, OA, OB, OC et OD sont des rayons de ce cercle.

D'où :
$$OA = OB = OC = OD$$
.

D'autre part, les angles \widehat{DOB} et \widehat{AOC} sont opposés par le sommet.

Donc,
$$\widehat{DOB} = \widehat{AOC}$$
.

Si deux triangles ont un angle de même mesure compris entre des côtés deux à deux de même longueur, alors ces deux triangles sont égaux.

Les triangles OAC et OBD ont un angle de même mesure ($\widehat{DOB} = \widehat{AOC}$), compris entre deux côtés de même longueur OA = OB = OC = OD. Les triangles OAC et OBD sont égaux.

Ce document PDF gratuit à imprimer est issu de la page :

• Evaluations 4ème Mathématiques : Géométrie Les triangles Cas d'égalité des triangles - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cette évaluation avec un énoncé vierge

• Cas d'égalité des triangles - 4ème - Evaluation, bilan, contrôle avec la correction

Les évaluations des catégories suivantes pourraient également vous intéresser :

- <u>Evaluations 4ème Mathématiques : Géométrie Les triangles Reconnaitre des triangles semblables PDF à imprimer</u>
 - Evaluations 4ème Mathématiques : Géométrie Les triangles Triangles égaux PDF à imprimer

Besoin d'approfondir en : 4ème Mathématiques : Géométrie Les triangles Cas d'égalité des triangles

- Cours 4ème Mathématiques : Géométrie Les triangles Cas d'égalité des triangles
- Exercices 4ème Mathématiques : Géométrie Les triangles Cas d'égalité des triangles
- Séquence / Fiche de prep 4ème Mathématiques : Géométrie Les triangles Cas d'égalité des triangles