Équations produits nuls et de type $x^2 = a$

Correction

Evaluation

Evaluation des compétences	Α	EA	NA
Je sais reconnaître une équation produit nul et une équation de type x²=a.			
Je sais résoudre une équation produit nul.			
Je sais résoudre une équation x ² = a.			

1 Parmi les équations ci-dessous, entoure en bleu les équations produits nuls et en rouge les équations de type $x^2 = a$.

(x-1)(2x)	+ 2) = 0
-----------	----------

C'est une équation produit nul car de la forme $A \times B = 0$

$$-3x(4x+1) = 0$$

C'est une équation produit nul car de la forme $A \times B = 0$.

$$-3x \times x = -9$$

C'est une équation type $x^2 = a$ car on peut réduire l'écriture du premier terme.

$$1 - 4x(-3x + 1) = 0$$

Ce n'est pas une équation produit nul (il manque une parenthèse) ni de type $x^2 = a$.

$$2x^2 - 3 = 5$$

C'est une équation de type $x^2 = a$ si l'on simplifie.

$$2x^2 + x = 5$$

Ce n'est ni une équation de type $x^2 = a$ ni produit nul.

2 Résous les équations produits suivantes.

1.(2x-3)(x+4) = 0

Un produit de facteurs est nul si au moins l'un des facteurs est nul.

Donc
$$2x - 3 = 0$$
 ou $x + 4 = 0$
 $2x = 3$ ou $x = -4$
 $x = \frac{3}{2}$ ou $x = -4$

Donc l'équation (2x-3)(x+4)=0admet pour solutions $x=\frac{3}{2}$ et x=-4.

$$2.(3x+7)(-5x+12) = 0$$

Un produit de facteurs est nul si au moins l'un des facteurs est nul.

Donc
$$3x + 7 = 0$$
 ou $-5x + 12 = 0$
 $3x = -7$ ou $-5x = -12$
 $x = -\frac{7}{3}$ ou $x = \frac{-12}{-5} = \frac{12}{5}$

Donc l'équation (3x + 7)(-5x + 12) = 0 admet pour solutions $x = -\frac{7}{3}$ et $x = \frac{12}{5}$.

$$3.(4x+8)(-3x)=0$$

Un produit de facteurs est nul si au moins l'un des facteurs est nul.

Donc
$$4x + 8 = 0$$
 ou $-3x = 0$
 $x = -8$ ou $x = \frac{0}{-3}$
 $x = -\frac{8}{4} = -2$ ou $x = 0$

Donc l'équation (4x + 8)(-3x) = 0admet pour solutions x = -2 et x = 0.

$$4.2x(3-4x) = 0$$

Un produit de facteurs est nul si au moins l'un des facteurs est nul.

Donc
$$2x = 0$$
 ou $3 - 4x = 0$
 $x = \frac{0}{2}$ ou $-4x = -3$
 $x = 0$ ou $x = \frac{-3}{-4} = \frac{3}{4}$

Donc l'équation 2x(3-4x)=0 admet pour solutions x=0 et $x=\frac{3}{4}$.

3 Résous les équations de type $x^2 = a$ suivantes.

1.
$$x^2 = 49$$

$$2. x^2 = -16$$

$$3. -2x^2 = -72$$
$$x^2 = \frac{-72}{-2} = 36$$

Donc
$$x = \sqrt{36}$$
 ou $x = -\sqrt{36}$
Donc $x = 6$ ou $x = -6$

4 Si besoin, simplifie ou factorise les expressions suivantes puis résous les équations.

$$1.(2+x)(2x+5)+(2+x)(-3x-3)=0$$

On identifie le facteur commun : (2 + x)

On factorise :
$$(2 + x)[(2x + 5) + (-3x - 3)] = 0$$

Donc
$$(2+x)[2x+5-3x-3] = 0$$

On en déduit que
$$(2 + x)(-x + 2) = 0$$

Un produit de facteurs est nul si au moins l'un des facteurs est nul.

Donc
$$2 + x = 0$$
 ou $-x + 2 = 0$

ou
$$-x + 2 =$$

$$x = -2$$
 ou $-x = -2$
 $x = -2$ ou $x = 2$

Donc l'équation (2+x)(2x+5)+(2+x)(-3x-3)=0 admet pour solutions x=-2 et x=2.

$$2. (7-3x)(4x+7) - (7-3x)(-5x+8) = 0$$

On identifie le facteur commun : (7 - 3x)

On factorise :
$$(7-3x)[(4x+7)-(-5x+8)] = 0$$

D'où
$$(7-3x)[4x+7+5x-8] = 0$$

On en déduit que
$$(7-3x)(9x-1) = 0$$

Un produit de facteurs est nul si au moins l'un des facteurs est nul.

Donc
$$7 - 3x = 0$$
 ou $9x - 1 = 0$

ou
$$9x - 1 = 0$$

$$3x = 7$$

$$3x = 7$$
 ou $9x = 1$

$$x = \frac{7}{3}$$
 ou $x = \frac{1}{9}$

ou
$$x = \frac{1}{9}$$

Donc l'équation (7-3x)(4x+7) - (7-3x)(-5x+8) = 0 admet pour solutions $x = \frac{7}{3}$ et $x = \frac{1}{3}$.

$$(x-3)^2 = 81$$

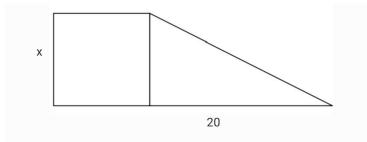
Donc
$$x - 3 = \sqrt{81}$$
 ou $x - 3 = -\sqrt{81}$

ou
$$x - 3 = -\sqrt{81}$$

$$Donc x - 3 = 9$$

Donc
$$x - 3 = 9$$
 ou $x - 3 = -9$

D'où
$$x = 9 + 3$$


ou
$$x = -9 + 3$$

Finalement
$$x = 12$$
 ou $x = -6$

ou
$$x = -6$$

6 Mr Dupont a séparé son jardin en 2 espaces distincts : le "potager", un carré de côté x, et la "pelouse", un triangle rectangle adjacent au potager et dont les côtés de l'angle droit mesurent respectivement x et 20 m. Mr Dupont se souvient que ces deux espaces ont exactement la même aire.

1. Représente la situation par un schéma.

2. Écris les expressions littérales des aires du potager et de la pelouse en fonction de x.

Le potager est un carré de côté x, donc :

$$A_{potager} = x^2$$

La pelouse est un triangle rectangle :

Donc
$$A_{pelouse} = \frac{Base \times hauteur}{2}$$

D'où
$$A_{pelouse} = \frac{20 \times x}{2} = 10x$$

3. Étant donné que ces 2 aires sont égales, déduis en une équation.

On sait que $A_{potager} = A_{pelouse}$

On en déduit que $x^2 = 10x$

5. Résous cette équation pour déterminer les dimensions des jardins de Mr Dupont.

On a $x^2 = 10x$

Donc
$$x^2 - 10x = 0$$

On factorise par
$$x : x(x - 10) = 0$$

Or un produit de facteurs est nul si au moins l'un des facteurs est nul.

Donc x = 0 ou x - 10 = 0

$$x = 0$$
 ou $x = 10$

Donc l'équation x(x - 10) = 0 admet pour solutions x = 0 et x = 10.

La solution x = 0 n'est pas possible ici donc le carré a pour côté 10 m et le triangle rectangle 10 et 20 m.

Ce document PDF gratuit à imprimer est issu de la page :

• Evaluations 3ème Mathématiques : Nombres et calculs Carré et racine carrée d'un nombre - PDF à imprimer

Le lien ci-dessous vous permet de télécharger cette évaluation avec un énoncé vierge

• Equation produit et racine carrée – 3ème – Evaluation avec la correction

Découvrez d'autres évaluations en : 3ème Mathématiques : Nombres et calculs Carré et racine carrée d'un r

- Racine carrée 3ème Evaluation avec le corrigé
- Racines carrées 3ème Contrôle à imprimer

Les évaluations des catégories suivantes pourraient également vous intéresser :

- Evaluations 3ème Mathématiques : Nombres et calculs Calcul littéral PDF à imprimer
- Evaluations 3ème Mathématiques : Nombres et calculs Équations et inéquations PDF à imprimer
- Evaluations 3ème Mathématiques : Nombres et calculs Fractions PDF à imprimer
- Evaluations 3ème Mathématiques : Nombres et calculs Les puissances PDF à imprimer
- Evaluations 3ème Mathématiques : Nombres et calculs Nombres entiers PDF à imprimer

Besoin d'approfondir en : 3ème Mathématiques : Nombres et calculs Carré et racine carrée d'un nombre

- Cours 3ème Mathématiques : Nombres et calculs Carré et racine carrée d'un nombre
- Exercices 3ème Mathématiques : Nombres et calculs Carré et racine carrée d'un nombre
- Vidéos pédagogiques 3ème Mathématiques : Nombres et calculs Carré et racine carrée d'un nombre
- <u>Vidéos interactives 3ème Mathématiques : Nombres et calculs Carré et racine carrée d'un nombre</u>
- <u>Séquence / Fiche de prep 3ème Mathématiques : Nombres et calculs Carré et racine carrée d'un nombre</u>