Géométrie : Lycée

Cours, exercices et évaluation corrigés à imprimer et modifier de la catégorie Géométrie - Mathématiques : Lycée, fiches au format pdf, doc et rtf.

Cours et exercice : Géométrie : Lycée

Positions relatives – Tle S – Exercices corrigés

Exercices à imprimer pour la terminale S – Positions relatives – Tle S Exercice 01 : SABCD est une pyramide de sommet S, dont la base ABCD est telle que (AB) et (CD) ne sont pas parallèles. Soit I le milieu de [BS]. Quelle est l’intersection des plans (SAB) et (SCD) ? Les droites (AI) et (CD) sont-elles sécantes ? Exercice 02 : Soient ABCDEFGH un cube et I, J, K des points des arêtes [AD], [AE] et [AB]. Construire…

Lire la suite

Positions relatives – Tle S – Cours

Cours de terminale S sur les positions relatives – Terminale S Par deux points distincts, il passe une seule droite. Une droite est donc parfaitement déterminée quand on en connait deux points. Il existe un seul plan contenant trois points non alignés. Un plan est donc parfaitement déterminé quand on en connait trois points non alignés. Si deux points A et B appartiennent à un plan P, alors la droite (AB) est incluse dans ce plan. Règle fondamentale : quel…

Lire la suite

Produit scalaire – Terminale S – Exercices corrigés – Application

Application du produit scalaire – Terminale S – Cours Exercice 01 : On considère le plan P d’équation suivante : Et le plan P’ d’équation suivante : Déterminer l’ensemble des réels m tels que P et P’ soient parallèles. Déterminer l’ensemble des points m tels que les plans P et P’ soient perpendiculaires. Caractériser alors leur droite d’intersection. Exercice 02 : Démontrer que si une droite est orthogonale à deux droites sécantes d’un plan, alors elle est orthogonale à toute…

Lire la suite

Produit scalaire de deux vecteurs – Terminale S – Exercices

Exercices corrigés à imprimer pour la terminale S – Géométrie Tle S – Produit scalaire de deux vecteurs Exercice 01 : Dans un tétraèdre régulier ABCD dont les arêtes sont de longueur a, on place I le milieu de [AB] et J le milieu de [BD]. Déterminer chacun des produits scalaires suivants : Exercice 02 : On considère deux points A et B de l’espace. Déterminer l’ensemble des points M de l’espace tels que : Exercice 03 : On considère…

Lire la suite

Produit scalaire de deux vecteurs – Terminale S – Cours

Cours tle S sur le produit scalaire de 2 vecteurs – Terminale S Produit scalaire de deux vecteurs Définitions: Dans l’espace, comme dans le plan, le produit scalaire de deux vecteurs est défini par : Si sont non nuls, alors cette définition est équivalente à : Dans un repère orthonormé, si les coordonnées de et celles de alors : Expression avec des points: Soient A, B et C trois points de l’espace et deux vecteurs Si H est le point…

Lire la suite

Vecteur normal à une droite, équation de droites et cercles – Première S – Cours

Cours de 1ère S – Equation de droites et cercles – Vecteur normal à une droite Vecteur normal à une droite Le plan est muni d’un repère orthonormé. On dit qu’un vecteur non nul est normal à une droite d s’il est orthogonal à la direction de d. La droite d passant par un point A et admettant le vecteur est l’ensemble des points M du plan tels que : Equation cartésienne d’une droite : Soit a, b et c…

Lire la suite

Equation d’une droite – 2nde – Exercices corrigés

Seconde – Exercices avec correction sur l’équation d’une droite – Géométrie Exercice 1 : droites parallèles ou pas. Le plan muni d’un repère. On considère des droites D 1 et D2 données par leurs équations. Dans chaque cas, déterminer si D 1 et D2 sont parallèles, confondues ou sécantes. Exercice 2 : Equation d’une droite Le plan muni d’un repère. On considère A (2 ; 1) et B (-3 ; 2) On se propose de déterminer une équation de la…

Lire la suite

Equation d’une droite – Seconde – Cours

Cours de 2nde sur l’équation d’une droite Equation d’une droite Dans un repère, toute droite admet une équation réduite de la forme : y = ax + b où a et b sont deux nombres réels. On distingue trois cas : – Droite non parallèle à l’axe des ordonnées : – Droite non parallèle à l’axe des abscisses : -Droite parallèle à l’axe des ordonnées, c’est-à-dire verticale, admet une équation de la forme x = k, avec k réel. Détermination…

Lire la suite

Repère du plan – 2nde – Exercices à imprimer

Exercices corrigés à imprimer sur le repère du plan en seconde Repère du plan – 2nde – Géométrie Exercice 1 : Des points. Dans le plan muni d’un repère orthonormal (O, I, J), on considère les points A (3 ; 4), B (-3 ; 2) etC (4 ; 1). a. Placer ces points et représenter le triangle ABC. b. Démontrer que le triangle ABC est rectangle. Exercice 2 : Alignement. Soient A, B deux points du plan de coordonnées respectives…

Lire la suite

Repère du plan – Seconde – Cours de géométrie

Cours de 2nde sur le repère du plan Repères et coordonnées des points Repères: quelconque, orthonormé, orthonormal Coordonnées cartésiennes d’un point Tout point M du plan est défini par ses coordonnées cartésiennes, à savoir son abscisse et son ordonnée. L’abscisse est le point d’intersection de parallèle à l’axe des ordonnées passant par M avec l’axe des abscisses. De même, l’ordonnée est le point d’intersection de la parallèle à l’axe des abscisses passant par M avec l’axe des ordonnées. On note…

Lire la suite

Géométrie : Lycée - Cours et exercice

Page 1 / 8 :12345...8

Tables des matières Géométrie - Mathématiques : Lycée