Continuité d'une fonction : Lycée

Cours, exercices et évaluation corrigés à imprimer et modifier de la catégorie Continuité d'une fonction - Fonctions - Généralités - Fonctions - Mathématiques : Lycée, fiches au format pdf, doc et rtf.

Cours et exercice : Continuité d'une fonction : Lycée

Théorème des valeurs intermédiaires – Terminale S – Exercices à imprimer

Exercices corrigés Tle S – Théorème des valeurs intermédiaires – Terminale S Exercice 01 : Théorème des valeurs intermédiaires Soit f une fonction définie sur par Justifier que l’équation a au moins une solution dans….. Etudier les variations de f puis dresser son tableau de variation. Démontrer que l’équation a une unique solution a dans ….. En déduire le signe de….. Exercice 02 : Théorème des valeurs intermédiaires   Voir les fichesTélécharger les documents rtf pdf Correction Correction – pdf…

Lire la suite

Théorème des valeurs intermédiaires – Terminale S – Cours

Tle S – Cours sur le théorème des valeurs intermédiaires en terminale S Théorème Soit f une fonction continue sur un intervalle fermé. Tout réel c compris entre a au moins un antécédent sur ; autrement dit, l’équation a au moins une solution sur. Cas particulier des fonctions strictement monotones Si la fonction est continue et strictement croissante (respectivement décroissante) sur, pour tout réel c de (respectivement de), l’équation a une unique solution sur. En particulier, si, l’équation a une…

Lire la suite

Continuité – Terminale S – Exercices corrigés Tle S

Exercices à imprimer avec la correction – Continuité – Terminale S Exercice 01 : Continue ou pas ? On considère la fonction f définie par La fonction f est –elle continue sur [0 ; 2] ? Exercice 02 : Continue ou pas ? On pose La fonction f est –elle continue sur [0 ; 2] ? Exercice 03 : Continue ou pas ? Soit a un réel et f la fonction définie sur par : Existe-t-il une valeur de a…

Lire la suite

Continuité – Terminale S – Cours

Tle S – Cours sur la continuité à imprimer pour la terminale S Fonction continue sur un intervalle Soit f une fonction définie sur un intervalle I de ℝ. Cela signifie que la courbe représentative de f ne présente pas de « trous » sur cet intervalle. On peut la tracer sans lever le crayon. Exemples et contre-exemples Toutes les fonctions usuelles sont continues. Les fonctions affines, carrées, polynômes, valeurs absolues sont continues sur ℝ. La fonction inverse est continue…

Lire la suite