Cours - Les Dérivées : Première S - 1ère S

Cours à imprimer et modifier de la catégorie Les Dérivées : Première S - 1ère S, fiches au format pdf, doc et rtf.

Cours Les Dérivées : Première S - 1ère S

Dérivée f’ de f – Première S – Cours

Cours de 1ère S sur la dérivée f’ de f Dérivée f’ de f Soit f une fonction définie et dérivable sur un intervalle I et f et f’ sa fonction dérivée. Théorème: f est croissante sur I si, et seulement si, f’ est positive sur I. f est décroissante sur I si, et seulement si, f’ est négative sur I. f est constante sur I si, et seulement si, f’ est nulle sur I. Exemple d’application : Solution :…

Lire la suite

Nombre dérivé – Première S – Cours

Cours de 1ère S sur le nombre dérivé Taux d’accroissement d’une fonction Soit f une fonction définie sur un intervalle I, a et b deux nombres réels distincts de I. on pose h = b – a, ce qui permet d’écrire b = a + h. Le taux d’accroissement de f entre a et a + h est le nombre : Nombre dérivé d’une fonction en un point Le nombre dérivé de f en a est la limite, si elle…

Lire la suite

Calcul des dérivées – Première S – Cours

Cours de 1ère S sur le calcul des dérivées Fonction dérivée Soit f une fonction définie sur un intervalle I. Si f est dérivable pour tout x de I, on dit que f est dérivable sur I. La fonction dérivée de f est la fonction qui à tout x de I associe le nombre . Dérivées des fonctions usuelles Le tableau suivant regroupe les fonctions usuelles et leurs dérivées. Dérivée d’une somme, d’un produit Soit u et v deux fonctions…

Lire la suite

Utilisation des dérivées – Première S – Cours

Cours de 1ère S sur l’utilisation des dérivées Utiliser les dérivées Lien entre le signe de la dérivée et le sens de variation Soit f une fonction définie et dérivable sur un intervalle I et sa fonction dérivée. f est croissante sur I si, et seulement si, est positive sur I. f est décroissante sur I si, et seulement si, est négative sur I. f est constante sur I si, et seulement si, est nulle sur I. Exemple : Extremum…

Lire la suite

Tables des matières Les Dérivées - Fonctions de référence - Fonctions - Mathématiques : Première S - 1ère S