Cours - Géométrie vectorielle : Lycée

Cours à imprimer et modifier de la catégorie Géométrie vectorielle : Lycée, fiches au format pdf, doc et rtf.

Cours Géométrie vectorielle : Lycée

Droites de l’espace – Caractérisation vectorielle – Terminale S – Cours

Caractérisation vectorielle des droites de l’espace et leur représentation paramétrique – Cours – Terminale S Caractérisation vectorielle des droites de l’espace Un point A et un vecteur de l’espace définissent une unique droite : la droite passant par les points A et M telle que On dit alors que est un vecteur directeur de la droite (AM). Deux droites sont parallèles si leurs vecteurs directeurs sont colinéaires et elles sont orthogonales si leurs vecteurs directeurs sont orthogonaux. Représentation paramétrique d’une…

Lire la suite

Plans de l’espace – Caractérisation vectorielle – Terminale S – Cours

Cours de Tle S – Caractérisation vectorielle des plans de l’espace et leur représentation paramétrique Caractérisation vectorielle des plans de l’espace Un point A et deux vecteurs non colinéaires de l’espace définissent un plan unique : le plan (ABC) tel que On dit alors que les vecteurs sont des vecteurs directeurs du plan (ABC). Le point M appartient au plan (ABC) si, et seulement si, il existe deux réels a et b tels que Trois vecteurs de l’espace sont coplanaires…

Lire la suite

Vecteurs de l’espace – Terminale S – Cours

Tle S – Cours sur les vecteurs de l’espace Définition A tout couple de points distincts A et B de l’espace, on associe le vecteur , qui a pour sens celui de A vers B, pour direction la droite (AB) et pour longueur AB. La notation de vecteur est définie dans l’espace comme dans le plan. Toutes les définitions et théorèmes appris dans le plan restent applicables et vrais dans l’espace. Vecteurs colinéaires et applications Deux vecteurs non nuls sont…

Lire la suite

Repères de l’espace – Terminale S – Cours

Cours de TleS – Repères de l’espace – Terminale S Définitions On appelle base de l’ensemble des vecteurs de l’espace tout triplet de vecteurs non coplanaires. Un repère de l’espace est défini par une origine, et trois vecteurs non nuls et non coplanaires. On note Si les vecteurs de base sont orthogonaux deux à deux, alors le repère est dit orthogonal et si la norme de chaque vecteur vaut 1, alors le repère est dit orthonormé. Propriétés Soit un repère…

Lire la suite

Tables des matières Géométrie vectorielle - Géométrie - Mathématiques : Lycée